CHEM 1215
Exam I
John I. Gelder
September 16, 1998
Name \qquad
TA's Name \qquad
Lab Section \qquad

Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do not sign no scores will be posted. All scores will be posted by a random number which will be assigned to you by Dr. Gelder.

(signature)

INSTRUCTIONS:

1. This examination consists of a total of 6 different pages. The last page includes a periodic table and some useful information. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES. You will receive 2 points for knowing your TA's name AND laboratory section number in which you are officially enrolled.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice (if any) or short answer questions.
4. No credit will be awarded if your work is not shown in problems 7 and 8.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Reldox and do well.

$$
\text { Page } 2 \quad \text { Page } 3 \quad \text { Page } 4 \quad \text { Page } 5
$$

TOTAL
SCORES

$$
\overline{(29)} \quad \overline{(40)} \quad \overline{(26)} \quad \overline{(3)}
$$

(6) 1. Indicate the number of significant figures in each of the following numbers;
a) 0.0022022 L 5 significant figures
b) $2.50 \times 10^{-4} \mathrm{~g} \mathbf{3}$ significant figures
c) $43,200 \mathrm{~m} \quad \mathbf{3}$ significant figures
(6) 2. Round off the number $50,525.09$ to the indicated number of significant digits;
a) 6 significant figures
50525.1
b) 4 sig figs
50530 or 5.053×10^{4}
c) 2 sig figs
51000 or 5.1×10^{4}
(7) 3. Complete each calculation and report the answer to the correct number of significant figures.
a) $104.506-6.89$
104.506
6.89
97.616
$\mathbf{9 7 . 6 2}$
b) $9.890 \times 10^{-2}-4.3 \times 10^{-4}$

$$
\begin{aligned}
& 9.890 \times 10^{-2} \\
& 0.043 \times 10^{-2} \\
& \mathbf{9 . 8 4 7} \times \mathbf{1 0}^{-\mathbf{2}}
\end{aligned}
$$

c) $0.49+\frac{1.501 \times 10^{1}}{(5.012+7.26)}$
$0.49+\frac{1.501 \times 10^{1}}{(12.27)}$
$0.49+1.223$

$$
1.71
$$

(10) 4. Diagram each of the following systems as viewed at the atomic level in the space provided. Be sure to clearly label each of the substances in your diagram.

A gaseous solution of neon and nitrogen.

NaCl dissolved in water
(8) 5. Provide the symbol or the proper spelling of the element's name for each of the following elements.
a) P
phosphorus
b) K
potassium
c) silver
Ag
d) beryllium
Be
(8) 6 . Write the formula for the binary ionic compound formed from the following pairs of elements.
a) sodium and oxygen
$\mathrm{Na}_{2} \mathrm{O}$
b) iodine and calcium
CaI_{2}
c) lithium and hydrogen

LiH
d) nitrogen and magnesium $\quad \mathbf{M g}_{3} \mathbf{N}_{\mathbf{2}}$
(24) 7. Perform the following conversions;
a) 54.0 miles to meters (use at least 3 conversion factors)

$$
54.0 \text { miles }\left(\frac{5280 \mathrm{feet}}{1 \mathrm{mile}}\right)\left(\frac{12 \text { inches }}{1 \text { foot }}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \text { inch }}\right)\left(\frac{1 \mathrm{~meter}}{100 \mathrm{~cm}}\right)=8.69 \times 10^{4} \mathrm{~m}
$$

b) $1.24 \times 10^{4} \mathrm{~cm}^{3}$ to gallons
$1.24 \times 10^{4} \mathrm{~cm}^{3}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}\right)\left(\frac{1.0567 \mathrm{qts}}{1 \mathrm{~L}}\right)\left(\frac{1 \text { gallon }}{4 \mathrm{qt}}\right)=3.28$ gallons
c) $14.9 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$ to $\frac{\mathrm{lb}}{\mathrm{in}^{3}}$

$$
14.9 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\left(\frac{1 \mathrm{lb}}{454 \mathrm{~g}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}=0.538 \frac{\mathrm{lb}}{\mathrm{in}^{3}}
$$

d) $98.6^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

$$
{ }^{\circ} \mathrm{C}=\frac{\mathbf{5}}{\mathbf{9}}\left({ }^{\circ} \mathrm{F}-32\right)=\mathbf{5}(98.6-32)=37.0{ }^{\circ} \mathrm{C}
$$

(8) 8. Assuming the density of blood is $1.06 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ and the average person has a mass of 13.31 kg of blood in their body calculate the volume of blood in the body in liters.
$13.31 \mathrm{~kg}\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mL}}{1.06 \mathrm{~g}}\right)\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)=12.6 \mathrm{~L}$
(8) 9. Complete the following table.

Symbol	\# protons	\# neutrons	\# electrons	charge
${ }_{25}^{57} \mathrm{Mn}^{5+}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{2 0}$	$\mathbf{5 +}$
$\mathbf{8 5}$ $\mathbf{3 4}$ $\mathbf{S e}^{\mathbf{2}}$	34	51	$\mathbf{3 6}$	$2-$

(10)10. Describe one of the three reactions shown in lecture. In your description include the substances that were involved in the reaction and at least two physical properties for each substance; describe the reaction which occurred; and write the name, or formula, for any product(s) formed. Include at least two physical properties for the product(s).

Aluminum, a silvery solid was added to bromine a brownish-red liquid. After the aluminum was added to the bromine it was a minute before the reaction began. When the reaction began it appeared as though the aluminum was on fire as the pieces moved rapidly around the surface of the bromine in the beaker. The product, aluminum bromide, was a white solid.

Potassium, a soft silvery solid was added to water, a clear, colorless liquid. A piece of potassium was dropped into a beaker of water. The potassium immediately caught fire emitting a blusih flame and moved rapidly across the surface of the water. One of the products of the reaction is hydrogen, a colorless gas.

Phosphorus, a yellow solid was dissolved in carbon disulfide, a clear, colorless liquid and squirted onto a piece of filter paper. The filter paper rested on the top of a graduated cylinder. The carbon disulfide evaporated filling the graduated cylinder. When enough carbon disulfide had evaporated the phosphorus reacted with oxygen, a colorless gas and caught fire, igniting the carbon disulfide in the graduated cylinder evoking a load 'bark'. The product was tetraphosphorus decaoxide, a white solid.

IA		IIA	Periodic Table of the Elements										IIIA IVA VA VIA VIIA					$\begin{aligned} & \text { VIIIA } \\ & \begin{array}{\|c\|} \hline \mathbf{2} \\ \mathbf{H e} \\ 4.00 \\ \hline \end{array} \end{aligned}$
1	$\stackrel{1}{\mathbf{H}}$																	
	1.008																	
2	3	4											5	6	7	8	9	10
	Li	Be											B	C	N	0	F	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
3	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	\mathbf{P}	S	Cl	Ar
	22.99	24.30	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	26.98	28.09	30.97	32.06	35.45	39.95
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
7	87	88	89	104	105	106	107	108	109									
	Fr	$\mathbf{R a}$	Ac	Rf	Db	Sg	Bh	Hs	Mt									
	(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)									

Lanthanides

58 Ce 	59 Pr	N0	P1 ${ }_{\text {Pm }}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	${ }_{\text {Eu }} \mathbf{6 3}$	G4	Tb	Dy	H7	${ }_{\text {Er }}^{68}$	${ }_{\text {Tm }}^{69}$	$\stackrel{70}{\mathbf{Y}}$	$\mathbf{L u}$
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information
1 pound $(\mathrm{lb})=453.59237$ gram (gm)
1 liter $(\mathrm{L})=1.056718$ quart (qt)
1 inch $(\mathrm{in})=2.54$ centimeters (cm)
${ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32$
density of water $=1.00 \frac{\mathrm{~g}}{\mathrm{~mL}}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
average atomic mass $=\Sigma($ isotopic mass \cdot fractional abundance $)$

