CHEM 1215
Exam I
John I. Gelder
February 2, 1988

Name
TA's Name
Lab Section

Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do not sign no scores will be posted.

(signature)

INSTRUCTIONS:

1. This examination consists of a total of 5 different pages. The last page includes a periodic table and some useful information. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in problems 1b, 3, 4 and 11.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Relax and do well.

$$
\text { Page } 2 \quad \text { Page } 3 \quad \text { Page } 4
$$

TOTAL
SCORES

$$
\overline{(47)} \quad \overline{(41)} \quad \overline{(12)}
$$

(12) 1. Gallium has one of the largest liquid ranges of any substance. It melts at $30^{\circ} \mathrm{C}$ and boils at $1983{ }^{\circ} \mathrm{C}$.
a) Is gallium a metal, nonmetal or a metalloid? \qquad
b) What is the boiling point of gallium in ${ }^{\circ} \mathrm{F}$? (Show your work.)
c) Is gallium a gas, liquid or solid at 273 K ? \qquad
(9) 2. Solve the following mathematical problems and report the answer to the correct number of significant figures. (Note: the numeric answer must be correct for credit.)
a) $\quad 104.05 \mathrm{~g}-6.0945 \mathrm{~g}=$
b) $\frac{546}{760.0}=$
c) $\frac{(13.38-6.823) \cdot 5.228}{20.059}=$
(12) 3. PS101, one of the lecturehalls for this class, is 16.7 meters long, 9.5 meters wide and 2.9 meters high. If the density of air at room temperature is $1.19 \mathrm{~g} \cdot \mathrm{~L}^{-1}$, calculate the mass of the air in PS101 during lecture.
(14) 4. Make the following conversions and show the mathematical set-up.
a) 454 grams to nanograms
b) $\quad 123 \mathrm{kJoules}$ to milliJoules (mJ)
(12) 5. Complete the following table.

Substance	Formula	Physical Properties
Bromine		
Sulfur		
Sodium carbonate		
Mercury(II) oxide		

(4) 6. For one of the substances in Problem \#5, briefly describe a chemical property as seen in lecture.
(9) 7. Chlorine has a freezing point of $-101.6^{\circ} \mathrm{C}$ and a boiling point at $-34.6^{\circ} \mathrm{C}$. Using the boxes below draw pictures of chlorine molecules (use at least six molecules) in the solid, liquid and gas phase.

(9) 8. Determine the number of atoms in each of the following compounds
$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$
C \qquad H \qquad O \qquad
$\mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ \qquad
\qquad
O \qquad
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{2}$
C \qquad
H \qquad
N \qquad O \qquad
(4) 9. Balance the following equations
a) $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \quad \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{CdS}$
b) $\mathrm{C}_{6} \mathrm{H}_{6}(l)+\mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
(3) 10. Name each of the following binary compounds

KCl
MgI_{2}
$\mathrm{N}_{2} \mathrm{O}_{5}$

Figure 1a.

Figure 1b.
(12) 11. A student fills the graduated cylinder on the far left with water (Figure 1a.). The student then adds a solid metallic substance to the graduate cylinder (Figure Ib.). If the mass of the solid object in the graduated cylinder is 5.216 g , calculate the density of the substance. (Show your work.)

Lanthanides

58 Ce 	59 Pr	N0	P1 ${ }_{\text {Pm }}$	$\begin{array}{r} 62 \\ \mathbf{S m} \end{array}$	${ }_{\text {Eu }} \mathbf{6 3}$	G4	Tb	Dy	H7	${ }_{\text {Er }}^{68}$	${ }_{\text {Tm }}^{69}$	$\stackrel{70}{\mathbf{Y}}$	$\mathbf{L u}$
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information
1 pound $(\mathrm{lb})=453.59237$ gram (gm)
1 liter $(\mathrm{L})=1.056718$ quart (qt)

$$
4 \mathrm{qt}=1 \text { gallon }(\mathrm{gal})
$$

1 inch $(\mathrm{in})=2.54$ centimeters $(\mathrm{cm}) \quad 1$ mile $=5280$ feet (ft)
${ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)$

$$
\text { density of water }=1.00 \frac{\mathrm{~g}}{\mathrm{~mL}}
$$

$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
average atomic mass $=\Sigma($ isotopic mass \cdot fractional abundance $)$

