CHEM 1215
Exam III
John III. Gelder
April 8, 1988

INSTRUCTIONS:

1. This examination consists of a total of 7 different pages. The last page includes a periodic table and some useful information. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in problems 2, 3, 6, 7, 9, 10 and 11.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Relax and do well.

$\begin{array}{llllll}\text { Page } 2 & \text { Page } 3 & \text { Page } 4 & \text { Page } 5 & \text { Page } 6 & \text { TOTAL }\end{array}$

SCORES
$\overline{(13)} \quad \overline{(12)} \quad \overline{(10)}$

(6)
(100)
(10) 1. Complete and balance the following equations. (If no reaction occurs write NR.)
a) $\operatorname{Sr}(s)+\mathrm{Br}_{2}(l) \rightarrow$
b) $\quad \mathrm{K}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
c) $\mathrm{BaCO}_{3}(s)-\Delta \rightarrow$
d) $\mathrm{Mg}(s)+\mathrm{HCl}(a q) \rightarrow$
e) $\mathrm{AgNO}_{3}(a q)+\mathrm{Fe}(s) \rightarrow$
f) $\quad \mathrm{HNO}_{3}(a q)+\mathrm{Al}(\mathrm{OH})_{3}(a q) \rightarrow$
g) $\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow$
h) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+\mathrm{HCl}(a q) \rightarrow$
i) $\mathrm{Cl}_{2} \mathrm{O}_{7}(g)+\mathrm{H}_{2} \mathrm{O}(a q) \rightarrow$
j) $\mathrm{Rb}(s)+\mathrm{H}_{2} \mathrm{O}(a q) \rightarrow$
(3) 2. Calculate the percentage composition, by weight, of NaHCO_{3}.
(4) 3. Determine the empirical formula of a compound which is 40.9% carbon, 4.55% hydrogen and 54.6% oxygen.

If the molar mass of this compound is $176 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, determine the molecular formula of the compound.
(8) 4. Complete the following table

Formula	M, Molar Mass $\left(\frac{\mathrm{g}}{\mathrm{mol}}\right)$	m, Mass of sample (g)	n, Moles of sample (mol)	N, Number of atoms, molecules, or formula units
$\mathrm{H}_{2} \mathrm{SO}_{4}$	98.0	0.825		
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	152			9.63×10^{23}
unknown		56.8	0.476	
Mo	95.9		62.8	

(3) 5. The reaction of element X with element Y

$$
\begin{aligned}
& O=X \\
& O=Y
\end{aligned}
$$

is represented in the following diagram

Write a balanced chemical equation describing the reaction.
(3) 6. Using the equation below, and assuming an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and KI , how many moles of KMnO_{4} are required to produce 1.0 mol of I_{2} ?

$$
2 \mathrm{KMnO}_{4}(a q)+10 \mathrm{KI}(a q)+8 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 6 \mathrm{~K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{MnSO}_{4}(a q)+5 \mathrm{I}_{2}(s)+8 \mathrm{H}_{2} \mathrm{O}(l)
$$

(4) 7. How many grams of N_{2} are required to react with 2.30 moles of Mg in the process:

$$
\mathrm{Mg}(s)+\mathrm{N}_{2}(g) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(s)
$$

(3) 8 . The equation for the reaction is

$$
2 \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Consider a mixture of sulfur and oxygen

$$
\begin{aligned}
& \%=S \\
& \infty=Q_{2}
\end{aligned}
$$

in a closed container as illustrated below:

In the box below draw a picture depicting the products after the reaction has gone to completion.

(6) 9. What is the maximum mass of $\mathrm{Ni}(\mathrm{OH})_{2}$ that could be prepared by mixing 26.0 g of NiCl_{2} and 10.0 g of NaOH ? (assume a double displacement reaction.)
(3) 10. The volume of a sample of ethane gas, $\mathrm{C}_{2} \mathrm{H}_{6}$, is 3.24 L at 477 mmHg . If the volume is reduced to 1.86 L , calculate the new pressure of the gas. Assume the temperature and the quantity of gas are constant.
(3) 11. A 748 mL sample of hydrogen gas, H_{2}, at $-210^{\circ} \mathrm{C}$ is warmed to $100^{\circ} \mathrm{C}$. Calculate the new volume of the gas sample. Assuming the pressure and the quantity of gas are constant.

Lanthanides

Actinides

58 Ce	$\stackrel{59}{\text { Pr }}$	Nd	${ }_{\text {Pm }}{ }^{61}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	$\begin{array}{\|c} 63 \\ \mathbf{E u} \end{array}$	$\begin{array}{r} 64 \\ \mathbf{G d} \end{array}$	$\begin{array}{\|c} 65 \\ \mathbf{T b} \end{array}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	Ho	$\stackrel{68}{\text { Er }}$	Tm ${ }^{69}$	$\stackrel{70}{\mathbf{Y}}$	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259	(260)

Useful Information

6.02×10

