CHEM 1215 Exam III John III. Gelder November 10, 1999

Name	
TA's Name	
Lab Section	_

INSTRUCTIONS:

- 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and a solubility table. All work should be done in this booklet.
- 2. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO NOT SEPARATE THESE PAGES</u>.
- 3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice (if any) or short answer questions.
- 4. No credit will be awarded if your work is not shown in problems 3, 5 7 and 8.
- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.

	Page 2	Page 3	Page 4	Page 5	TOTAL
SCORES	(29)	(34)	(23)	(14)	(100)

- (9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous.
 - a) $H_2SO_4(aq) + Mg(OH)_2(aq) \rightarrow$
 - b) $N_2(g) + O_2(g) \rightarrow$
 - c) $Al(NO_3)_3(aq) + NaOH(aq) \rightarrow$
- (8) 2. Write the balanced ionic and balanced net ionic chemical equations for the reactions a) and c) in Problem 1. (Remember to include the correct charges on all ions and the phase of each species.)
 - 1a) Ionic equation:

Net Ionic equation:

1c) Ionic equation:

Net Ionic equation:

(12)3a. Determine the empirical formula of a compound that is 69.8% carbon, 11.7% hydrogen, and 18.6% oxygen by mass.

b) If the molar mass of this compound is 172 g mol⁻¹, determine the molecular formula.

(22)4. Complete the following table

	M, Molar	m, Mass of	n, Moles of	N, Number of atoms,
Formula	$\operatorname{Mass}\left(\frac{g}{\operatorname{mol}}\right)$	sample (g)	sample (mol)	molecules, or formula units
SO ₃		4.13 x 10 ⁻²		
Na ₂ C ₂ O ₄			1.39	
unknown		9.41 x 10 ²		5.91 x 10 ²⁴ atoms
KPtCl ₃ (C ₂ H ₄)	369	7.03 x 10 ⁻⁴		

Provide the symbol of the unknown element

- (12) 5. Calculate the following,
 - a) the <u>mass</u>, in grams, of a single atom of mercury.

b) the <u>number</u> of molecules of water in 1.0 mol of the hydrate $CuSO_4 \cdot 5H_2O$.

c) the <u>number</u> of CH₄ molecules and the number of hydrogen atoms in 9.22 g of methane, CH₄.

(13) 6. For the reaction

$$P_4(s) + 10Cl_2(g) \rightarrow 4PCl_5(g)$$

Calculate how many grams of chlorine that must react to produce 32.5 g of PCl₅. (Assume phosphorus is in excess.)

(10) 7. Calculate the mass of silver produced when 3.22 g of Zn react with 4.35 g of AgNO₃.

$$Zn(s) + 2AgNO_3(aq) \rightarrow 2Ag(g) + Zn(NO_3)_2(aq)$$

(14) 8. Acetonitile, C_2H_3N , is an important nonaqueous solvent. The compound reacts with O_2 according to the equation,

$$4C_2H_3N(g) + 15O_2(g) \rightarrow 8CO_2(g) + 6H_2O(g) + 4NO_2(g)$$

- 47.6 g of acetonitile are added to an amount of oxygen. After the reaction occurs 28.4 grams of H₂O and 48.4 g of NO₂ are produced. Answer each of the following,
- a) the mol of H₂O produced?

b) the mass of CO₂ produced?

c) Could O₂ be the limiting reagent or is it in excess in this reaction? Explain. (You may use a calculation to support your answer.)

(5) 9. THIS IS EXTRA CREDIT. DO NOT ATTEMPT UNTIL AFTER YOU ARE THROUGH DOING THE FIRST 9 QUESTIONS.

A 2.24 gram sample of an unknown metal reacts with HCl to produce 0.0808~g of H_2 gas. Identify the metal assuming all of it reacts. (Show ALL your work!)

	IA		F	Perio	odic	Tal	ole (of th	ie E	lem	ents	,					,	VIIIA
1	\mathbf{H}^{1}																	2 He
	1.008	IIA											IIIA	IVA	VA		VIIA	
2	3 Li	Be											5 B	$\overset{6}{\mathbf{C}}$	\mathbf{N}	$\frac{8}{0}$	9 F	Ne
_	6.94	9.01											10.81	12.01		16.00	19.00	20.18
2	11	12											13	14	15 D	16	17	18
3	Na 22.99	Mg 24.30		IVR	VB	VIB	VIIB		-VIII-		IB	IIB	Al 26.98	Si	P 30.97	S 32.06	Cl 35.45	Ar 39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35.43	36
4	K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47 88	50 94	52 00	5/1 9/1	55 85	58 03	58 60	63 55	65.38	69.72	70 50	7100	7000	= 000	02.00
															74.92	78.96		
5	37 D b	38 S	39	40	41	42	43	44	45	46	47	48	49	50	51	52	79.90 53	54
5	Rb	Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
		Sr	39	40 Zr	41 Nb	42	43 Tc	44 Ru	45	46	47 Ag	48	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
56	Rb 85.47	Sr 87.62 56 Ba	39 Y 88.91 57 La	40 Zr 91.22 72 Hf	41 Nb 92.91 73 Ta	42 Mo 95.94 74 W	43 Tc (98) 75 Re	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7 82 Pb	51 Sb 121.8 83 Bi	52 Te 127.6	53 I 126.9	54 Xe 131.3
	85.47 55 Cs 132.9	Sr 87.62 56 Ba 137.3	39 Y 88.91 57 La 138.9	40 Zr 91.22 72 Hf 178.5	41 Nb 92.91 73 Ta 180.9	42 Mo 95.94 74 W 183.8	43 Tc (98) 75 Re 186.2	44 Ru 101.1 76 Os 190.2	45 Rh 102.9 77 Ir 192.2	46 Pd 106.4	47 Ag 107.9 79 Au	48 Cd 112.4 80 Hg	49 In 114.8 81	50 Sn 118.7 82 Pb	51 Sb 121.8 83 Bi	52 Te 127.6 84 Po	53 I 126.9 85 At	54 Xe 131.3 86 Rn
	Rb 85.47 55 Cs 132.9	Sr 87.62 56 Ba 137.3	39 Y 88.91 57 La 138.9	40 Zr 91.22 72 Hf 178.5	41 Nb 92.91 73 Ta 180.9	42 Mo 95.94 74 W 183.8 106	43 Tc (98) 75 Re 186.2	44 Ru 101.1 76 Os 190.2 108	45 Rh 102.9 77 Ir 192.2 109	46 Pd 106.4 78 Pt	47 Ag 107.9 79 Au	48 Cd 112.4 80 Hg	49 In 114.8 81 Tl	50 Sn 118.7 82 Pb	51 Sb 121.8 83 Bi	52 Te 127.6 84 Po	53 I 126.9 85 At	54 Xe 131.3 86 Rn
	85.47 55 Cs 132.9	\$r 87.62 56 Ba 137.3 88 Ra	39 Y 88.91 57 La 138.9	40 Zr 91.22 72 Hf 178.5 104 Rf	41 Nb 92.91 73 Ta 180.9 105 Db	42 Mo 95.94 74 W 183.8 106 Sg	43 Tc (98) 75 Re 186.2	44 Ru 101.1 76 Os 190.2	45 Rh 102.9 77 Ir 192.2 109 Mt	46 Pd 106.4 78 Pt	47 Ag 107.9 79 Au	48 Cd 112.4 80 Hg	49 In 114.8 81 Tl	50 Sn 118.7 82 Pb	51 Sb 121.8 83 Bi	52 Te 127.6 84 Po	53 I 126.9 85 At	54 Xe 131.3 86 Rn

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
	140.1		144.2											175.0
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Solubility Table

K ⁺	soluble	none *slightly soluble
NH ₄ ⁺	soluble	none
Na ⁺	soluble	none
S ²⁻	insoluble	except Group IA, IIA and NH ₄ ⁺
-OH	insoluble	except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺
CrO ₄ ²⁻	insoluble	except Group IA, IIA and NH ₄ ⁺
PO ₄ 3-	insoluble	except Group IA and NH ₄ ⁺
CO ₃ ²⁻	insoluble	except Group IA and NH ₄ ⁺
SO ₄ ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CI	soluble	except Ag^{+} , Hg_{2}^{2+} , *Pb ²⁺
CIO ₄	soluble	none
NO ₃	soluble	none
<u>lon</u>	<u>Solubility</u>	<u>Exceptions</u>