CHEM 1215
Exam III
John III. Gelder
November 11, 1998

Name \qquad
TA's Name \qquad
Lab Section \qquad

INSTRUCTIONS:

1. This examination consists of a total of 7 different pages. The last page includes a periodic table and a solubility table. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice (if any) or short answer questions.
4. No credit will be awarded if your work is not shown in problems 3-5 and 8-10.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Reldx and do well.

TOTAL
SCORES
Page 2 Page $3 \quad$ Page $4 \quad$ Page $5 \quad$ Page 6
$\overline{(30)} \quad \overline{(16)} \quad \overline{(30)} \quad \overline{(12)} \quad \overline{(100)}$
(12) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous.
a) $\quad \mathbf{2 H}_{3} \mathrm{PO}_{4}(a q)+\mathbf{3 C a}(\mathrm{OH})_{2}(a q) \rightarrow \mathbf{C a}\left(\mathbf{P O}_{4}\right)_{2}(s)+\mathbf{6 H}_{2} \mathbf{O}(l)$
b) $\quad 2 \mathrm{Ba}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{Ba}(\mathbf{O H})_{2}(a q)+\mathbf{H}_{2}(g)$
c) $\quad \mathrm{K}_{2} \mathrm{CO}_{3}(a q)+\mathrm{HCl}_{(a q)} \rightarrow$
(8) 2. Write the balanced ionic and balanced net ionic chemical equations for any two of the reactions in Problem 1. (Remember to include the correct charges on all ions and the phase of each species.) $1 \mathrm{a}, 1 \mathrm{~b}$ or 1 c)

Ionic equation:

Net Ionic equation:
$1 \mathrm{a}, 1 \mathrm{~b}$ or 1 c)
Ionic equation:

Net Ionic equation:
(10) 3. Dopamine, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}$, is a neurotransmitter. Determine the percent (by mass) composition of each of the elements in dopamine.
(10) 4. Find the empirical formula of a compound that is 48.38% carbon, 8.12% hydrogen, and 53.5% oxygen by mass.
(6) 5. The formula of the sulfate of an unknown metal, X , is $\mathrm{X}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. The compound also is $41.7 \% \mathrm{X}$, $19.4 \% \mathrm{~S}$ and 38.9% O. Determine the atomic mass and the symbol of the element X.
(20) 6. Complete the following table

Formula	M, Molar Mass $\left(\frac{\mathrm{g}}{\mathrm{mol}}\right)$	m, Mass of sample (g)	n, Moles of sample (mol)	N, Number of atoms, molecules, or formula units
KClO_{3}				1.45×10^{22} formula units
SO_{2}		399		
unknown		4.91	6.28×10^{-2}	
$\mathrm{Mg}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$	403		2.48×10^{-2}	

(10) 7. The thermite reaction

$$
\mathrm{Al}(s)+\mathrm{Fe}_{3} \mathrm{O}_{4}(s) \rightarrow \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)
$$

Calculate how many grams of iron can be produced when 14.0 g of Al are combined with excess $\mathrm{Fe}_{3} \mathrm{O}_{4}$.
(12) 8. Acrylonitrile, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$, is an important component for synthetic fibers and plastics. The compound is synthesized from propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$, ammonia and oxygen according to the equation,

$$
\mathrm{C}_{3} \mathrm{H}_{6}(g)+\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}(l)+\mathrm{H}_{2} \mathrm{O}(g)
$$

89.5 g of propene are added to an amount of ammonia and oxygen. After the reaction occurs 1.65 moles of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ are produced. Answer each of the following,
a) the mass of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ produced?
b) the mass of NH_{3} reacting?
c) Is propene the limiting reagent in this reaction? Explain. (You may use a calculation to support your answer.)
(12) 9. The reaction which occurs when an Alka-Seltzer ${ }^{\mathrm{TM}}$ tablet is added to water,

$$
3 \mathrm{NaHCO}_{3}(a q)+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(a q) \rightarrow 3 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(a q)
$$

One Alka-Seltzer tablet contains 1.92 g of sodium bicarbonate and 1.00 g of citric acid. What mass of carbon dioxide gas will fizz out when one tablet is plopped into water?

Lanthanides

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	$\mathbf{P a}$	U	Np	$\mathbf{P u}$	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Solubility Table

$\underline{I o n}$		
$\mathrm{NO}_{3}{ }^{-}$	Solubility	Exceptions
$\mathrm{ClO}_{4}{ }^{-}$	soluble	none
Cl^{-}	soluble	none
$\mathrm{SO}_{4}{ }^{2-}$	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+},{ }^{2-} \mathrm{Pb}^{2+}$
$\mathrm{CO}_{3}{ }^{2-}$	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
$\mathrm{PO}_{4}{ }^{3-}$	insoluble	except Group IA and NH_{4}^{+}
$\mathrm{CrO}_{4}{ }^{2-}$	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
$-\mathrm{OH}^{2-}$	insoluble	except Group IA, ${\mathrm{IIA} \mathrm{and} \mathrm{NH}_{4}{ }^{+}}^{\mathrm{S}^{2-}}$
Na^{+}	insoluble	except Group IA, * $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
NH_{4}^{+}	soluble	none
K^{+}	soluble	none
	soluble	none

