CHEM 1515.001
Exam III
John III. Gelder
November 7, 2001

Name
TA's Name
Lab Section

INSTRUCTIONS:

1. This examination consists of a total of 9 different pages. The last three pages include a periodic table, some useful mathematical equations, a solubility table and a table of equilibrium constants. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in problems 3, 5, 6b and 7.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Rellox and do well.

	Page 2	Page 3	Page 4	Page 5	Page 6	TOTAL
SCORES	$\overline{(23)}$	$\overline{(20)}$	$\overline{(30)}$	$\overline{(9)}$	$\overline{(16)}$	$\overline{(100)}$

(9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
a) $\mathrm{HI}(a q)+\mathrm{RbOH}(a q) \rightarrow$
b) $\mathrm{Na}_{2} \mathrm{~S}(a q)+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(a q) \rightarrow$
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)+\mathrm{HCN}(a q) \rightarrow$
(8) 2. Write the ionic and net ionic chemical equations for 1a).

1a)
Ionic equation:

Net Ionic equation:

1b)
Ionic equation:

Net Ionic equation:
(6) 3. Give the name or draw the Lewis structure for each of the following compounds.

	4,5-dimethyl-2-hexyne	2,3-dimethyl-2-butene

(20) 4. When $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with $\mathrm{CO}_{2}(\mathrm{~g})$ at 2000 K , the equilibrium is achieved according to the equation below,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

In one experiment, the following equilibrium concentrations were measured;

$$
\begin{gathered}
{\left[\mathrm{H}_{2}\right]=0.150 \mathrm{M}} \\
{\left[\mathrm{CO}_{2}\right]=0.400 \mathrm{M}} \\
{\left[\mathrm{H}_{2} \mathrm{O}\right]=[\mathrm{CO}]=0.550 \mathrm{M}}
\end{gathered}
$$

a) Calculate the value of K_{C}, the equilibrium constant for the reaction.
b) In a different experiment, $0.75 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ is mixed with 0.75 mol of $\mathrm{CO}_{2}(\mathrm{~g})$ in a 3.00 liter reaction vessel at 2000 K . Calculate the equilibrium concentrations, in moles per liter of all species at this temperature.
(30) 5. Calculate the pH for each of the following solution;
a) $0.00360 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
b) $0.750 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ (propionic acid)
c) $0.218 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Short Answer: Parts a-d are worth 4 points, part e is worth 6 points and part f is worth 9 points.
(20) 6 a. Identify the acid, base, conjugate acid and conjugate base in the following chemical equation,

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

b) K for the reaction in 6a above has a value of 290 . Identify the stronger acid and base in the reaction.

$$
\text { acid } \quad \text { base }
$$

c) The pH of a $5.50 \times 10^{-4} \mathrm{M} \mathrm{HClO}_{3}$ solution is about 3.30 . Is HClO_{3} a strong acid or a weak acid? Explain.
d) Identify the chemical specie(s) in the highest concentration in 6c. (Note: excluding water.)
e) Identify each of the following substances as an acid or a base and write a chemical equation that describes the acid or base character.
i) $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}(\mathrm{aq})$
ii) $\quad \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}^{-}(\mathrm{aq})$
f) Kp is 2.00 at a certain temperature for the reaction below

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The reaction mixture initially contains 1 atm of each compound in the equation, and then is allowed to proceed towards equilibrium.
i) Will the total pressure of the reaction system increase, decrease or stay the same? Explain.
ii) Will $\mathrm{P}_{\mathrm{NO}}=\mathrm{P}_{\mathrm{O}_{2}}$ when equilibrium is established? Explain.
iii) The reaction between $\mathrm{NO}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is exothermic. What will happen to the magnitude of K if the temperature of the reaction is increased? Explain

Lanthanides

58 Ce	59 Pr	N0	$\stackrel{61}{\text { Pm }}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \end{gathered}$	$\begin{array}{r} 64 \\ \mathbf{G d} \end{array}$	$\begin{array}{\|c} 65 \\ \mathbf{T b} \end{array}$	$\begin{array}{\|c} 66 \\ \text { Dy } \end{array}$	Ho	${ }_{\text {Er }}^{68}$	Tm ${ }^{69}$	$\stackrel{70}{\mathbf{Y}}$	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	$\mathbf{P a}$	U	Np	$\mathbf{P u}$	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259	(260)

Useful Information

$\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{x}_{1,2}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ for $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
6.023×10^{23}
$\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

E. 1 DISSOCIATION CONSTANTS FOR ACIDS AT $25{ }^{\circ} \mathrm{C}$

Name	Formula	$\mathrm{K}_{\mathrm{a} 1}$	$\mathrm{K}_{\mathrm{a} 2}$	$\mathrm{K}_{\mathrm{a} 3}$
Acetic	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}		
Ascorbic	$\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$	8.0×10^{-3}		
Arsenic	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	5.6×10^{-3}	1.0×10^{-7}	3.0×10^{-12}
Arsenous	$\mathrm{H}_{3} \mathrm{AsO}_{3}$	6.0×10^{-10}		
Benzoic	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.5×10^{-5}		
Boric	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.8×10^{-10}		
Butyric acid	$\mathrm{HC}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	1.5×10^{-5}		
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	
Cyanic	HCNO	3.5×10^{-4}		
Citric	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Formic	HCHO_{2}	1.8×10^{-4}		
Hydroazoic	HN_{3}	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	7.2×10^{-4}		
Hydrogen chromate ion	HCrO_{4}^{-}	3.0×10^{-7}		
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	2.4×10^{-12}		
Hydrogen selenate ion	$\mathrm{HSeO}_{4}{ }^{-}$	2.2×10^{-2}		
Hydrogen sulfate ion	HSO_{4}^{-}	1.2×10^{-2}		
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	5.7×10^{-8}	1.3×10^{-13}	
Hypobromous	HBrO	2.0×10^{-9}		
Hypochlorous	HClO	3.0×10^{-8}		
Hypoiodus	HIO	2.0×10^{-11}		
Iodic	HIO_{3}	1.7×10^{-1}		
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}		
Malonic	$\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$	1.5×10^{-3}	2.0×10^{-6}	
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	
Nitrous	HNO_{2}	4.5×10^{-4}		
Phenol	$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$	1.3×10^{-10}		
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Paraperiodic	$\mathrm{H}_{5} \mathrm{IO}_{6}$	2.8×10^{-2}	5.3×10^{-9}	
Propionic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	1.3×10^{-5}		
Pyrophosphoric	$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}$	3.0×10^{-2}	4.4×10^{-3}	
Selenous	$\mathrm{H}_{2} \mathrm{SeO}_{3}$	2.3×10^{-3}	5.3×10^{-9}	
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	strong acid	1.2×10^{-2}	
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	
Tartaric	$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	1.0×10^{-3}	4.6×10^{-5}	

E. 2 DISSOCIATION CONSTANTS FOR BASES AT $25^{\circ} \mathrm{C}$

Name	Formula	K_{b}	Name	Formula	K_{b}
Ammonia	NH_{3}	1.8×10^{-5}	Hydroxylamine	HONH_{2}	1.1×10^{-8}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}	Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
Dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	5.4×10^{-4}			
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}	Trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.4×10^{-5}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	1.3×10^{-6}			

Solubility Table

$\underline{\text { Ion }}$	Solubility	Exceptions
NO_{3}^{-}	soluble	none
ClO_{4}^{-}	soluble	none
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, * \mathrm{~Pb}^{2+}$
I^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Pb}^{2+}$
SO_{4}^{2-}	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
CO_{3}^{2-}	insoluble	except Group IA and NH_{4}^{+}
PO_{4}^{3-}	insoluble	except Group IA and NH_{4}^{+}
$-\mathrm{OH}^{+}$	insoluble	except Group IA, $* \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
S^{2-}	insoluble	except Group IA, IIA and NH_{4}^{+}
Na^{+}	soluble	none
NH_{4}^{+}	soluble	none
K^{+}	soluble	none $\quad *$ slightly soluble

