CHEM 1515.001
Exam V
John V. Gelder
May 8, 2001

Name
TA's Name
Lab Section

INSTRUCTIONS:

1. This examination consists of a total of 9 different pages. The last three pages include a periodic table, some useful mathematical equations and a solubility table. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in problems $4,5 \mathrm{~d}, 6 \mathrm{~b}, 6 \mathrm{c}, 6 \mathrm{~d}$ and 7 .
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Rellax and do well.

$\begin{array}{llllll}\text { Page } 2 & \text { Page } 3 & \text { Page } 4 & \text { Page } 5 & \text { Page } 6 & \text { TOTAL }\end{array}$

SCORES

$$
\overline{(26)} \quad \overline{(26)} \quad \overline{(15)} \quad \overline{(22)} \quad \overline{(12)} \quad \overline{(100)}
$$

(12) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
a) $\mathrm{H}_{5} \mathrm{SO}_{4}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \rightarrow$
b) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(a q)+\mathrm{KSCN}(a q) \rightarrow$
c) $\mathrm{C}_{5} \mathrm{H}_{10(g)}+\mathrm{O}_{2}(g) \rightarrow$
d) $\mathrm{Al}(s)+\mathrm{KOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow$
(8) 2. Write the ionic and net ionic chemical equations for 1 a) and 1 b .

1a)
Ionic equation:

Net Ionic equation:

1b)
Ionic equation:

Net Ionic equation:
(6) 3. Define the term equilibrium vapor pressure.
(9) 4. A 0.900 g sample of pure water is injected into a 3.50 L evacuated vessel at $70.0^{\circ} \mathrm{C}$. Indicate the phase(s) present and the pressure exerted by water in the vapor phase.

Short Answer:
5a. Explain why alcohols like $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are very soluble in water but an alcohol like $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}$ is insoluble in water. (9)
b) Acetone, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ is very soluble in water. Draw several acetone molecules and several water molecules and clearly indicate how molecules interact. In your sketch label the most important intermolecular attractive force between acetone and water molecules. (8)

Short Answer:
5. Continued
c) Perovskite is composed of titanium, oxygen and calcium. A unit cell of perovskite is simple cubic in titanium ions and contains a calcium ion in the center of the unit cell and crystallizes and oxide ions located in the center of every edge (in the edge-centered octahedral holes). What is the formula for perovskite? (5)
d) Diamond crystallizes in a face-centered cubic unit cell of carbon atoms with additional carbon atoms in half of the tetrahedral holes. How many carbon atoms in a unit cell of diamond? If the density of diamond is $3.51 \mathrm{~g} \mathrm{~cm}^{-3}$, what is the volume of the unit cell and its edge length? (10)
(22) 6.

$$
2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftarrows 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g)
$$

When heated, hydrogen sulfide gas decomposes according to the equation above. A 3.40 g sample of $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is introduced into an evacuated rigid 1.25 L container. The sealed container is heated to 483 K , and $3.72 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{S}_{2}(g)$ is present at equilibrium.
a) Write the equilibrium expression, K_{c}, for the decomposition reaction represented above. (4)
b) Calculate the equilibrium concentrations, in $\mathrm{mol} \mathrm{L}^{-1}$, of $\mathrm{H}_{2} \mathrm{~S}$ and H_{2}. (8)
c) Calculate the value of the equilibrium constant, K_{c}, for the decomposition reaction at 483 K . (4)
d) After the above reaction attains equilibrium at 483 K , the volume of the container is doubled to 2.50 L . Which direction will the reaction proceed to re-establish equilibrium? Explain your answer. (6)
(12) 7. The decomposition of dimethyl ether at ordinary pressures is first order with a half-life of 25.0 min at $500^{\circ} \mathrm{C}$.

$$
\mathrm{CH}_{3} \mathrm{OCH}_{3}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

Calculate
a) Beginning with 8.00 g of dimethyl ether, determine the mass remaining after 145 minutes.
b) What fraction of the original dimethyl ether remains after 3.50 minutes?
b) the pH of the solution after adding 0.0100 mol of HCl to the solution.

1	IA		Periodic Table of the Elements										IIIA IVA VA VIA VIIA					VIIIA			
	$\underset{1.008}{\mathbf{H}}$																	2 $\mathbf{H e}$ 4.00			
	1.008	IIA				VIB VIIB												4.00			
	3	4	IIIB	IVB	VB			$\square \mathrm{VIII}-$			IB	IIB	5	6	7	8	,	10			
2	Li	Be						B	C	N			0	F	Ne						
	6.94	9.01						10.81	12.01	14.01			16.00	19.00	20.18						
	11	12						13	14	15			16	17	18						
3	Na	Mg						Al	Si	\mathbf{P}			S	Cl	Ar						
	22.99	24.30						26.98	28.09	30.97			32.06	35.45	39.95						
	19	20	21	22	23	24	25				26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn				Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94				55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43				44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc				Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3			
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn			
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)			
	87	88	89	104	105	106	107	108	109												
7	Fr	$\mathbf{R a}$	Ac	Rf	Db	Sg	Bh	Hs	Mt												
	(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)												

Lanthanides

58 Ce	59 Pr	N0	${ }_{\text {Pm }} \mathbf{6 1}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	${ }^{63}$	G4	Tb	Dy	H7	${ }_{68}^{68}$	${ }_{\text {Tm }}^{69}$	$\stackrel{70}{\mathbf{Y}}$	71 $\mathbf{L u}$ 15
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(24)	(24	(247)	(247)	(251)	(252)	(257)	(258	(25	(260)

Useful Information
$\mathrm{PV}=n \mathrm{RT}$
$\ln \left(\frac{\mathrm{vp}_{2}}{\mathrm{vp}_{1}}\right)=-\frac{\Delta \mathrm{H}_{\mathrm{vap}}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$

$$
\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$\mathrm{q}=$ mass \cdot Specific heat $\cdot \Delta \mathrm{T}$
$\Delta \mathrm{T}=i \mathrm{~km} \quad \mathrm{k}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}} \quad \mathrm{k}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}$
$\mathrm{P}_{\text {solution }}=\chi_{\text {solvent }} \mathrm{P}_{\text {solvent }}^{\circ}$
edge length $(1)=2 r$

$$
\text { edge length }(\mathrm{l})=2 \sqrt{2} \cdot \mathrm{r} \quad \text { edge length }(\mathrm{l})=\frac{4 \mathrm{r}}{\sqrt{3}}
$$

$\mathrm{x}_{1,2}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ for $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
6.023×10^{23}
$\ln \left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\ln \left(\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}\right)=\frac{\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\ln \left(\frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{A}]_{\mathrm{o}}}\right)=-\mathrm{kt}$

$$
\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}-\frac{1}{[\mathrm{~A}]_{\mathrm{o}}}=\mathrm{kt}
$$

$K_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$

Solubility Table

Ion	Solubility	Exceptions
$\mathrm{NO}_{3}-$	soluble	none
ClO_{4}	soluble	none
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, * \mathrm{~Pb}^{2+}$
I^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
$\mathrm{CO}_{3}{ }^{2-}$	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
$\mathrm{PO}_{4}{ }^{3-}$	insoluble	except Group IA and $\mathrm{NH}_{4}{ }^{+}$
-OH	insoluble	except Group IA, * $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
S^{2-}	insoluble	except Group IA, IIA and $\mathrm{NH}_{4}{ }^{+}$
Na^{+}	soluble	none
NH_{4}^{+}	soluble	none \quad
K^{+}	soluble	none \quad *slightly soluble

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Vapor Pressure (mmHg)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Vapor Pressure (mmHg)
-5	3.2	50	92.5
0	4.6	55	118.0
5	6.52	60	149.4
10	9.20	65	187.5
15	12.8	70	233.7
20	17.5	75	289.1
25	23.8	80	355.1
30	31.8	85	433.6
35	42.1	90	525.8
40	55.3	95	633.9
45	71.9	100	760

Simple Ionic Structures Grouped According to Anion Packing

Structure Name	Anion Packing	Coordination Number	Sites Occupied by Cations	Examples
Rock Salt	ccp	6:6 MO	all octahedral	$\begin{aligned} & \mathrm{NaCl}, \mathrm{LiF}, \mathrm{KBr}, \\ & \mathrm{CdO}, \mathrm{FeO} \end{aligned}$
Zinc Blende	ccp	4:4 MO	$\frac{1}{2}$ tetrahedral	ZnS, BeO, SiC
Antifluorite	ccp	4:8 $\mathrm{M}_{2} \mathrm{O}$	all tetrahedral	$\mathrm{Li}_{2} \mathrm{O}$, sulfides
Rutile	distorted ccp	6:3 MO2	$\frac{1}{2}$ octahedral	$\begin{aligned} & \mathrm{TiO}_{2}, \mathrm{GeO}_{2}, \\ & \mathrm{MnO}_{2}, \mathrm{OsO}_{2} \end{aligned}$
Perovskite	ccp	12:6:6 ABO_{3}	$\frac{1}{4} \operatorname{octahedral(B)}$	$\begin{aligned} & \hline \mathrm{CaTiO}_{3}, \\ & \mathrm{SrSnO}_{3} \\ & \hline \end{aligned}$
Spinel	ccp	4:6:4 AB2 ${ }^{\text {O }}$	$\begin{aligned} & \frac{1}{8} \text { tetrahedral(A) } \\ & \frac{1}{2} \operatorname{octahedral(B)} \end{aligned}$	$\begin{aligned} & \mathrm{MgAl}_{2} \mathrm{O}_{4}, \\ & \mathrm{FeAlO}_{4} \end{aligned}$
Cesium Chloride	simple cubic	8:8 MO	all cubic	CsCl, CsBr, CsI
Florite	simple cubic	$8: 4 \mathrm{MO}_{2}$	$\frac{1}{2} \text { cubic }$	$\begin{aligned} & \hline \mathrm{CaF}_{2}, \mathrm{UO}_{2}, \\ & \mathrm{ThO}_{2} \end{aligned}$

Lattice Types and Radius Ratios of Cations and Anions

Radius Ratio
(Cation/Anion)Lattice Type

Coordination Number of Cation Anion
A. 1:1 Stoichiometry of Salt (MX)
$0.225-0.414$ Zinc Blende
$0.414-0.732$ Rock salt (NaCl)
4
4
0.732 - 1.000 Cesium chloride

8
6
8
B. 1:2 Stoichiometry of Salt $\left(\mathrm{MX}_{2}\right)$
$0.225-0.414$ Beta-quartz 4
$0.414-0.732$ Rutile $\left(\mathrm{TiO}_{2}\right) \quad 6$
0.732 - 1.000 Fluorite $\left(\mathrm{CaF}_{2}\right)$

8
4

