Lesson #54					
Before Lesson					
v	Read assigned pages in your text:				
During Lange	Work Exercise 6 in the Lectureguide				
<i>During Lesson</i> Work Exercises 6 - 9 in the Lectureguide					
After Lesson	Work Excloses 0 ') in the Eccureguide				
	Complete Lectureguide material				
	Work Problems 21.2 and 21.3 in Problem Set #21				

6. Define the terms; *rate equation* and *rate law* for a chemical reaction.

7. Write the general rate law for the following reaction;

 $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$

Identify the rate constant in the rate law. What are the exponents in the rate law called?

8. What experimental data is needed to determine the order of a chemical reaction?

a. Consider the reaction $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ and the following initial rate data. Experiment mm<u>Hg</u> P_{NO}(mmHg) P_{H2}(mmHg) Initial Rate (Number 400 150 0.66 1 2 400 300 1.34 3 150 400 0.25 1.03 4 300 400 i) Determine the reaction order for NO and H₂. Ans: H₂ is 1st order and NO is 2nd order ii) Determine the overall order of the reaction. iii) Write the specific rate law for the reaction. Ans: rate = $k(P_{NO})^2(P_{H_2})^1$ iv) Determine the rate constant for the reaction (include units). Ans: $k = 2.7 \times 10^{-8} \text{ mmHg}^{-2} \cdot \text{sec}^{-1}$

c. For the reaction

$$A + 3B + C \rightarrow products$$

and the following initial rate data.

Exp. #	[A]	[B]	[C]	Rate of formation of product $\left(\frac{M}{s}\right)$
1	1.05 x 10 ⁻²	2.50 x 10 ⁻²	4.00 x 10 ⁻³	1.74 x 10 ⁻⁴
2	8.71 x 10 ⁻²	2.50 x 10 ⁻²	4.00 x 10 ⁻³	1.19 x 10 ⁻²
3	2.10 x 10 ⁻²	2.10 x 10 ⁻²	2.10 x 10 ⁻²	1.34 x 10 ⁻³
4	4.20 x 10 ⁻²	2.10 x 10 ⁻²	4.20 x 10 ⁻²	7.58 x 10 ⁻³

i) Determine the reaction order for A, B and C.

ii) Determine the overall order of the reaction.

iii) Write the specific rate law for the reaction.

Ans: rate = $k[A]^2[Y]^1[C]^{1/2}$ iv) Determine the rate constant for the reaction (include units).

Ans: $k = 998 \text{ M}^{-2.5} \cdot \text{sec}^{-1}$