Lesson \#54

Before Lesson
Read assigned pages in your text:
Work Exercise 6 in the Lectureguide
During Lesson
Work Exercises 6-9 in the Lectureguide
After Lesson
Complete Lectureguide material
Work Problems 21.2 and 21.3 in Problem Set \#21
6. Define the terms; rate equation and rate law for a chemical reaction.
7. Write the general rate law for the following reaction;

$$
2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NOCl}_{(g)}
$$

Identify the rate constant in the rate law. What are the exponents in the rate law called?
8. What experimental data is needed to determine the order of a chemical reaction?
a. Consider the reaction

$$
2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

and the following initial rate data.
Experiment

Number	$\mathrm{P}_{\mathrm{NO}}(\mathrm{mmHg})$	$\mathrm{P}_{\mathrm{H}_{2}}(\mathrm{mmHg})$	Initial Rate $\left(\frac{\mathrm{mmHg}}{\mathrm{s}}\right)$
1	400	150	0.66
2	400	300	1.34
3	150	400	0.25
4	300	400	1.03

i) Determine the reaction order for NO and H_{2}.

Ans: $\mathrm{H}_{\mathbf{2}}$ is $\mathbf{1 s t}$ order and NO is 2 nd order
ii) Determine the overall order of the reaction.
iii) Write the specific rate law for the reaction.

Ans: rate $=k\left(\mathbf{P}_{\mathrm{NO}}\right)^{\mathbf{2}}\left(\mathbf{P}_{\mathbf{H}_{2}}\right)^{\mathbf{1}}$
iv) Determine the rate constant for the reaction (include units).
b. The following initial rate data were collected for the reaction

$$
2 \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(g)
$$

at $100{ }^{\circ} \mathrm{C}$. (Problems: BL 15.15 - 15.16)

Exp.	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{F}_{2}\right]$	initial rate $(\mathrm{M} / \mathrm{sec})$
1	0.0482 M	0.0318 M	1.90×10^{-3}
2	0.0120 M	0.0315 M	4.69×10^{-4}
3	0.0480 M	0.127 M	7.57×10^{-3}

i) Determine the reaction order for NO_{2} and F_{2}.

Ans: \mathbf{F}_{2} is $\mathbf{1}$ st order and $\mathrm{NO}_{\mathbf{2}}$ is $\mathbf{1}$ st order
ii) Determine the overall order of the reaction.
iii) Write the specific rate law for the reaction.

Ans: rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{\mathbf{1}}\left[\mathrm{F}_{2}\right]^{\mathbf{1}}$ iv) Determine the rate constant for the reaction (include units).

Ans: $k=1.24 \mathrm{M}^{-1} \cdot$ sec $^{-1}$
c. For the reaction

$$
\mathrm{A}+3 \mathrm{~B}+\mathrm{C} \rightarrow \text { products }
$$

and the following initial rate data.

Exp. \#	$[\mathrm{A}]$	$[\mathrm{B}]$	$[\mathrm{C}]$	Rate of formation of product $\left(\frac{\mathrm{M}}{\mathrm{s}}\right)$
1	1.05×10^{-2}	2.50×10^{-2}	4.00×10^{-3}	1.74×10^{-4}
2	8.71×10^{-2}	2.50×10^{-2}	4.00×10^{-3}	1.19×10^{-2}
3	2.10×10^{-2}	2.10×10^{-2}	2.10×10^{-2}	1.34×10^{-3}
4	4.20×10^{-2}	2.10×10^{-2}	4.20×10^{-2}	7.58×10^{-3}

i) Determine the reaction order for A, B and C .
ii) Determine the overall order of the reaction.
iii) Write the specific rate law for the reaction.

Ans: rate $=k[A]^{2}[Y]^{1}[C]^{1 / 2}$
iv) Determine the rate constant for the reaction (include units).

