Chem 1515.001 – 1515.006 InClass Exercise #5 Week of October 29, 2001 Fall 2001

Name		
TA Name		
	Lab Section #	

ALL work must be shown to receive full credit. Due at the end of laboratory.

ICE5.1. The reaction

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

was studied at 760 °C. 0.200 mol of PCl₅ are placed in a 1.00 liter container and allowed to decompose. After equilibrium was established the concentration of PCl₃ was found to be 0.195 M. Calculate the equilibrium constant for the reaction at this temperature.

Answer: $K_c = 7.6$

ICE5.2. The reaction

$$2H_2S(g) + 3O_2(g) \rightleftharpoons 2H_2O(g) + 2SO_2(g)$$

has a $\Delta H = -1036$ kJ. Given the reaction is at equilibrium, predict the direction (L \rightarrow R, R \rightarrow L, or no change) the reaction will shift when disrupted by each of the following;

i) the amount of H_2O is increased

 $\boldsymbol{R} \to \boldsymbol{L}$

ii) the temperature of the reaction is increased

 $\boldsymbol{R} \to \boldsymbol{L}$

iii) the volume of the container is decreased

 $L \to R \,$

iv) the amount of H₂S is decreased

 $\boldsymbol{R} \to \boldsymbol{L}$

ICE5.3. At 1100 K 1.00 mol of SO₂ and 2.00 moles of O₂ are introduced into a 1.00 liter container and allowed to react according to the reaction,

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

At equilibrium the concentration of SO_2 is 0.188 M. Calculate K_c for the reaction.

Answer: $K_c = 11.7$

ICE5.4. The magnitude of the equilibrium constant for the reaction,

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

is 54.7 at 700 K. If the initial partial pressure of H_2 is 0.250 atm and the partial pressure of I_2 is 0.500 atm at 700 K, calculate the concentrations of all species when the reaction reaches equilibrium.

Answer: $[H_2] = 0.015$ atm, $[I_2] = 0.265$ atm, [HI] = 0.470 atm

CHEM 1515 2 FALL 2001

ICE5.5. Consider the reaction

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

for which $\Delta H_{rxn} = +206$ kJ. Assume a 1.00 L vessel containing an equilibrium mixture, predict how the [CH₄] will change when the equilibrium is disturbed by,

a) addition of H₂O

[CH₄] will decrease

b) addition of H₂

[CH₄] will increase

c) increase in temperature

[CH₄] will decrease

d) decrease in the volume of the reaction container

[CH₄] will increase

ICE5.6. At 200 °C, 0.500 mol of H₂, 0.500 mol of N₂ and 0.500 mol of NH₃ are introduced into a 1.00 liter container and allowed to react according to the equation,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

At equilibrium the concentration of NH_3 is 0.384 M. Calculate K_c for the reaction.

Answer: $K_c = 0.863$

ICE5.7. What conditions of temperature and pressure favor the formation of products in the reaction,

$$\mathrm{CH}_4(g) + \frac{1}{2}\mathrm{O}_2(g) \rightleftarrows \mathrm{CO}(g) + 2\mathrm{H}_2(g)$$
 $\Delta\mathrm{H}^\circ = 35.7 \mathrm{~kJ}$

- A) high temperature and low pressure.
- B) high temperature and high pressure
- C) low temperature and low pressure
- D) low temperature and high pressure