Chem 1515.001-1515.006
InClass Exercise \#5
Week of October 29, 2001
Fall 2001

Name \qquad
TA Name \qquad
Lab Section \# \qquad
ALL work must be shown to receive full credit. Due at the end of laboratory.
ICE5.1. The reaction

$$
\mathrm{PCl}_{5(g)} \rightleftarrows \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)}
$$

was studied at $760{ }^{\circ} \mathrm{C} .0 .200 \mathrm{~mol}$ of PCl_{5} are placed in a 1.00 liter container and allowed to decompose. After equilibrium was established the concentration of PCl_{3} was found to be 0.195 M . Calculate the equilibrium constant for the reaction at this temperature.

Answer: $K_{c}=7.6$

ICE5.2. The reaction

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

has a $\Delta \mathrm{H}=-1036 \mathrm{~kJ}$. Given the reaction is at equilibrium, predict the direction $(\mathrm{L} \rightarrow$ $\mathrm{R}, \mathrm{R} \rightarrow \mathrm{L}$, or no change) the reaction will shift when disrupted by each of the following;
i) the amount of $\mathrm{H}_{2} \mathrm{O}$ is increased $\mathbf{R} \rightarrow \mathbf{L}$
ii) the temperature of the reaction is increased $\mathbf{R} \rightarrow \mathbf{L}$
iii) the volume of the container is decreased
$\mathbf{L} \rightarrow \mathbf{R}$
iv) the amount of $\mathrm{H}_{2} \mathrm{~S}$ is decreased $\mathbf{R} \rightarrow \mathbf{L}$

ICE5.3. At 1100 K 1.00 mol of SO_{2} and 2.00 moles of O_{2} are introduced into a 1.00 liter container and allowed to react according to the reaction,

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}
$$

At equilibrium the concentration of SO_{2} is 0.188 M . Calculate K_{c} for the reaction.

ICE5.4. The magnitude of the equilibrium constant for the reaction,

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftarrows 2 \mathrm{HI}(g)
$$

is 54.7 at 700 K . If the initial partial pressure of H_{2} is 0.250 atm and the partial pressure of I_{2} is 0.500 atm at 700 K , calculate the concentrations of all species when the reaction reaches equilibrium.

ICE5.5. Consider the reaction

$$
\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftarrows \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)
$$

for which $\Delta \mathrm{H}_{\mathrm{rxn}}=+206 \mathrm{~kJ}$. Assume a 1.00 L vessel containing an equilibrium mixture, predict how the $\left[\mathrm{CH}_{4}\right]$ will change when the equilibrium is disturbed by,
a) addition of $\mathrm{H}_{2} \mathrm{O}$
[CH_{4}] will decrease
b) addition of H_{2}

[CH_{4}] will increase

c) increase in temperature

[CH_{4}] will decrease

d) decrease in the volume of the reaction container

[CH_{4}] will increase

ICE5.6. At $200{ }^{\circ} \mathrm{C}, 0.500 \mathrm{~mol}$ of $\mathrm{H}_{2}, 0.500 \mathrm{~mol}$ of N_{2} and 0.500 mol of NH_{3} are introduced into a 1.00 liter container and allowed to react according to the equation,

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)
$$

At equilibrium the concentration of NH_{3} is 0.384 M . Calculate K_{c} for the reaction.

ICE5.7. What conditions of temperature and pressure favor the formation of products in the reaction,

$$
\mathrm{CH}_{4(g)}+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftarrows \mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \quad \Delta \mathrm{H}^{\circ}=35.7 \mathrm{~kJ}
$$

A) high temperature and low pressure.
B) high temperature and high pressure
C) low temperature and low pressure
D) low temperature and high pressure

