Chem 1515 Problem Set #11	Name	
Fall 2001	TA Name	
	Lab Section #	

ALL work must be shown to receive full credit. Due at the beginning of lecture on Friday, November 2, 2001.

- PS11.1. For aqueous solutions of the following substances, write the dissociation reaction and indicate whether the substance behaves as an Arrhenius acid or base.
 - a) HF(aq)
 - b) $HC_6H_5O(aq)$
 - c) $Ba(OH)_2(aq)$
 - d) LiOH(*aq*)
 - e) $H_2O(aq)$
 - f) $H_2CO_3(aq)$
- PS11.2. Calculate the pH and pOH in each of the following aqueous solutions. In each case, indicate whether the solution is acidic or basic.
 - a) $[H^+] = 3.89 \times 10^{-5} \text{ M}$ d) $[H^+] = 9.39 \times 10^{-10} \text{ M}$
 - b) $[OH^{-}] = 8.34 \text{ x } 10^{-2} \text{ M}$ e) $[H^{+}] = 4.0 \text{ M}$
 - c) $[OH^{-}] = 1.50 \text{ x } 10^{-7} \text{ M}$ ($[OH^{-}]$ in milk) f) $[OH^{-}] = 10.1 \text{ M}$
- PS11.3. Calculate the [H⁺] and [OH⁻] in each of the following aqueous solutions.
 - a) pH = 3.40 (pH of orange juice)
 - b) pH = 6.7 (pH of silva)
 - c) pH = 4.4 (pH of beer)
 - d) pOH = 2.15
 - e) pOH = 12.4
 - f) pH = -0.650

CHEM 1515

PS11.4. For each of the following acids, write the formula for the conjugate base.

- a) HPO_4^{2-} c) H_2O e) OH^{-}
- b) HClO₃ d) $CH_3CH_2NH_3^+$ f) NH_4^+

PS11.5. For each of the following bases, write the formula for the conjugate acid.

a)
$$OH^-$$
 c) HCO_3^{2-} e) CH_3NH_2

- b) Cl^- d) H_2O f) $(CH_3)_3N$
- PS11.6. For the following compounds, write the reaction with water and indicate the Brø nsted acid, base, the conjugate acid and conjugate base.
 - a) HBr(g)
 - b) $NH_3(g)$
 - c) HCN(g)
 - d) $HC_7H_5O_2(s)$
 - e) $CH_3NH_2(l)$
- PS11.7. For each of the following compounds, write two Brø nsted-Lowry equations, one showing how the substance behaves as an acid, the second showing how the substance behaves as a base.
 - a) $HCO_3^{-}(aq)$
 - b) $NH_3(aq)$
 - c) HPO₄^{2–}(g)
 - d) $HSO_4^{-}(s)$

- PS11.8. Determine the equilibrium constant for the following solutions. (Show your work clearly!) a) 0.250 M HF whose pH = 1.89.

b) 0.235 M NH_3 whose pH = 11.31.

c) 0.500 M B whose pH = 9.34.

d) 0.302 M HA whose pH = 4.80.

PS11.9. Given the following substances and their initial concentration:

a)	0.200 M HNO ₃	e)
b)	0.200 M HF	Ð

e)	55.5 M H ₂ O
f)	0.200 M HNO ₂

i) 0.200 M HC₆H₅O j) 0.200 M Ba(OH)₂

2 j) 0.200 M Ba(OH) NH₂ k) 0.003501 M HF

c) 0.200 M NaOH
d) 0.200 M C₅H₅N

g) 0.200 M CH₃NH₂
h) 0.200 M C₂H₅NH₂

 $00 \text{ M C}_2H_5NH_2$ 1) 0.200 M HOCL

Answer the following,

- i) identify each as an acid, base or neutral substance.
- ii) list the K_a value for each acid and K_b value for each base.
- iii) identify each substance as strong or weak.
- iv) calculate the [H⁺] and the pH of each of the solutions. {Show calculation for a, c, d, e, h, j, and k.}
- v) determine the percent ionization for each acid and base.
- vi) rank all substances from strongest acid...weakest acid...neutrals.. ...weakest base...strongest base.

PS11.9. (Continued)

PS11.9 (Continued)