Chem 1515
Problem Set \#11
Fall 2001

Name \qquad
TA Name \qquad Lab Section \# \qquad
ALL work must be shown to receive full credit. Due at the beginning of lecture on Friday, November 2, 2001.

PS11.1. For aqueous solutions of the following substances, write the dissociation reaction and indicate whether the substance behaves as an Arrhenius acid or base.
a) $\mathrm{HF}(a q)$
b) $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}(a q)$
c) $\mathrm{Ba}(\mathrm{OH})_{2}(a q)$
d) $\mathrm{LiOH}(a q)$
e) $\mathrm{H}_{2} \mathrm{O}(a q)$
f) $\mathrm{H}_{2} \mathrm{CO}_{3}(a q)$

PS11.2. Calculate the pH and pOH in each of the following aqueous solutions. In each case, indicate whether the solution is acidic or basic.
a) $\left[\mathrm{H}^{+}\right]=3.89 \mathrm{x} 10^{-5} \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right]=8.34 \times 10^{-2} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=1.50 \times 10^{-7} \mathrm{M}\left(\left[\mathrm{OH}^{-}\right]\right.$in milk $\left.) \mathrm{f}\right)\left[\mathrm{OH}^{-}\right]=10.1 \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=9.39 \times 10^{-10} \mathrm{M}$
e) $\left[\mathrm{H}^{+}\right]=4.0 \mathrm{M}$

PS11.3. Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following aqueous solutions.
a) $\mathrm{pH}=3.40(\mathrm{pH}$ of orange juice)
b) $\mathrm{pH}=6.7(\mathrm{pH}$ of silva)
c) $\mathrm{pH}=4.4(\mathrm{pH}$ of beer $)$
d) $\mathrm{pOH}=2.15$
e) $\mathrm{pOH}=12.4$
f) $\mathrm{pH}=-0.650$

PS11.4. For each of the following acids, write the formula for the conjugate base.
a) HPO_{4}^{2-}
b) HClO_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}$
e) OH^{-}
f) NH_{4}^{+}

PS11.5. For each of the following bases, write the formula for the conjugate acid.
a) OH^{-}
b) Cl^{-}
c) HCO_{3}^{2-}
d) $\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
f) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

PS11.6. For the following compounds, write the reaction with water and indicate the Brø nsted acid, base, the conjugate acid and conjugate base.
a) $\mathrm{HBr}(g)$
b) $\mathrm{NH}_{3}(g)$
c) $\mathrm{HCN}(g)$
d) $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(s)$
e) $\mathrm{CH}_{3} \mathrm{NH}_{2}(l)$

PS11.7. For each of the following compounds, write two Brø nsted-Lowry equations, one showing how the substance behaves as an acid, the second showing how the substance behaves as a base.
a) $\mathrm{HCO}_{3}^{-(a q)}$
b) $\mathrm{NH}_{3}(a q)$
c) $\mathrm{HPO}_{4}{ }^{2-(g)}$
d) $\mathrm{HSO}_{4}^{-}(s)$

PS11.8. Determine the equilibrium constant for the following solutions. (Show your work clearly!)
a) 0.250 M HF whose $\mathrm{pH}=1.89$.
b) $0.235 \mathrm{M} \mathrm{NH}_{3}$ whose $\mathrm{pH}=11.31$.
c) 0.500 M B whose $\mathrm{pH}=9.34$.
d) 0.302 M HA whose $\mathrm{pH}=4.80$.

PS11.9. Given the following substances and their initial concentration:
a) $0.200 \mathrm{M} \mathrm{HNO}_{3}$
b) 0.200 M HF
c) 0.200 M NaOH
d) $0.200 \mathrm{M} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
e) $55.5 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$
f) $0.200 \mathrm{M} \mathrm{HNO}_{2}$
g) $\quad 0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$
h) $0.200 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
i) $0.200 \mathrm{M} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$
j) $0.200 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
k) 0.003501 M HF
l) 0.200 M HOCl

Answer the following,
i) identify each as an acid, base or neutral substance.
ii) list the K_{a} value for each acid and K_{b} value for each base.
iii) identify each substance as strong or weak.
iv) calculate the $\left[\mathrm{H}^{+}\right]$and the pH of each of the solutions. \{Show calculation for $\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{h}, \mathrm{j}$, and k.$\}$
v) determine the percent ionization for each acid and base.
vi) rank all substances from strongest acid...weakest acid...neutrals.. ...weakest base...strongest base.

PS11.9. (Continued)

PS11.9 (Continued)

