Chem 1515 Problem Set #5 Fall 2001	Name
	TA Name

Lab Section #_____

ALL work must be shown to receive full credit. Due at the beginning of lecture on monday, October 8, 2001.

PS5.1. The following data was collected for the reaction

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

Experi	iment #1	Experin	ment #2
time (sec)	Conc.(M)	time (sec)	Conc.(M)
0	1.480	0	0.960
25	1.450	25	0.947
50	1.421	50	0.935
75	1.393	75	0.923
100	1.366	100	0.911
300	1.185	300	0.826
400	1.111	400	0.790
600	0.988	600	0.726
700	0.936	700	0.697
800	0.889	800	0.671
1000	0.808	1000	0.624
1500	0.659	1500	0.531
2000	0.556	2000	0.462
3000	0.424	3000	0.367

a) Plot the data for Exp. #1 and graphically estimate

Time (sec)

PS5.1. (Continued)

i) the initial rate

$$\frac{\Delta y}{\Delta x} = \frac{1.48 - 1.42}{0 - 50} = 1.20 \text{ x } 10^{-3} \frac{\text{M}}{\text{s}}$$

ii) the instantaneous rate at 100 sec? 800 sec? 2000 sec?

at 100 s instantaneous rate is 1.02 x $10^{-3} \frac{M}{s}$ at 800 s instantaneous rate is 4.33 x $10^{-3} \frac{M}{s}$ at 2000 s instantaneous rate is 1.69 x $10^{-4} \frac{M}{s}$

iii) the time it takes for half of the N_2O_5 to react

half-life is approximately 1150 s

- b) Repeat a) for Exp #2
 - i) the initial rate

$$\frac{\Delta y}{\Delta x} = \frac{0.960 - 0.947}{0 - 25} = 5.20 \text{ x } 10^{-4} \frac{\text{M}}{\text{s}}$$

ii) the instantaneous rate at 100 sec? 800 sec? 2000 sec?

at 100 s instantaneous rate is 4.3 x $10^{-4} \frac{M}{s}$ at 800 s instantaneous rate is 2.6 x $10^{-4} \frac{M}{s}$ at 2000 s instantaneous rate is 7.8 x $10^{-5} \frac{M}{s}$

iii) the time it takes for half of the N_2O_5 to react

half-life is approximately 1800 s

c) By what factor did the initial concentration change in going from Exp #1 to Exp #2?

$$\frac{1.48 \text{ M}}{0.960 \text{ M}} = 1.54$$

d) By what factor did the initial rate change in going from Exp #1 to Exp #2?

$$\frac{1.20 \times 10^{-3} \frac{M}{s}}{5.20 \times 10^{-4} \frac{M}{s}} = 2.31$$

PS5.1. (Continued)

rate

e) What is the order of the reaction with respect to N_2O_5 ?

$$\frac{\text{rate}_2}{\text{rate}_1} = \frac{\text{k}_2[\text{N}_2\text{O}_5]_2^{\text{m}}}{\text{k}_1[\text{N}_2\text{O}_5]_1^{\text{m}}}$$

2.31 = (1.54)^m
m = 2

f) How did the half-life change for the two experiments?

The half-life increased by a factor of about 1.54.

g) Determine the rate constant for the reaction including units.

$$= k[N_2O_5]^2$$

$$k = \frac{\text{initial rate}}{[N_2O_5]^2}$$

$$= \frac{1.20 \times 10^{-3} \frac{M}{s}}{(1.48 \text{ M})^2}$$

$$= 5.48 \times 10^{-4} \text{ M}^{-1} \cdot \text{sec}^{-1}$$

h) What would the initial rate be if the initial concentration of N_2O_5 is 1.225 M? 0.475 M?

rate = $k[N_2O_5]^2 = 5.48 \times 10^{-4} M^{-1} \cdot sec^{-1} [1.225]^2 = 8.22 \times 10^{-4} M^{-1} \cdot sec^{-1}$

rate = $k[N_2O_5]^2 = 5.48 \times 10^{-4} M^{-1} \cdot sec^{-1} [0.475]^2 = 1.24 \times 10^{-4} M^{-1} \cdot sec^{-1}$

PS5.2. The following initial rate data were collected for the reaction

$Cr(H_2O)_6^{2+}(aq) + SCN^{-}(aq) \rightarrow Cr(H_2O)_5SCN^{2+}(aq) + H_2$	O(l)
at 25 °C.	

Exp. #	$[Cr(H_2O)_6^{2+}(aq)]$	[SCN-]	initial rate $\left(\frac{M}{s}\right)$
1	1.85 x 10 ⁻⁴ M	0.25 M	9.25 x 10 ⁻¹¹
2	4.56 x 10 ⁻⁴ M	0.25 M	$2.28 \ge 10^{-10}$
3	4.56 x 10 ⁻⁴ M	0.101 M	9.25 x 10 ⁻¹¹

a) Determine the reaction order for $Cr(H_2O)_6^{2+}(aq)$ and SCN^- .

The reaction is first order for $Cr(H_2O)_6^{2+}$ and first order for SCN-. To determine the order with respect to $Cr(H_2O)_6^{2+}$ experiments

1 and 2 will be used since the concentration of SCN⁻ is constant.

$$\frac{\text{rate}_2}{\text{rate}_1} = \frac{k_2 [\text{Cr}(\text{H}_2\text{O})_6^{2+}]_2^m [\text{SCN}^-]_2^n}{k_1 [\text{Cr}(\text{H}_2\text{O})_6^{2+}]_1^m [\text{SCN}^-]_1^n}$$

the rate constant and [SCN-] are constant. \mathbf{M}

$$\frac{2.28 \times 10^{-10} \frac{M}{s}}{9.25 \times 10^{-11} \frac{M}{s}} = \left(\frac{4.56 \times 10^{-4} M}{1.85 \times 10^{-4} M}\right)^{m}$$
$$\frac{2.46}{1 = m} = (2.46)^{m}$$

To determine the order of the reaction with respect to SCN-experiments 2 and 3 can be used.

$$\frac{\text{rate}_2}{\text{rate}_3} = \frac{\text{k}_2[\text{Cr}(\text{H}_2\text{O})_6^{2+}]_2^1[\text{SCN}_2^n]_2^n}{\text{k}_3[\text{Cr}(\text{H}_2\text{O})_6^{2+}]_3^1[\text{SCN}_2^n]_3^n}$$
$$\frac{2.28 \times 10^{-10} \frac{\text{M}}{\text{s}}}{9.25 \times 10^{-11} \frac{\text{M}}{\text{s}}} = \left(\frac{0.25}{0.101}\right)^n$$

$$2.46 = 2.47^{n}$$
 $n = 1$

- b) Determine the overall order of the reaction. The reaction is second order overall. overall order = m + n = 2
- c) Write the specific rate law for the reaction.

rate =
$$k[Cr(H_2O)_6^{2+}]^1[SCN^{-}]^1$$

d) Determine the rate constant for the reaction (include units).

$$k = \frac{\text{rate}}{[Cr(H_2O)_6^{2+}]^1[SCN^{-}]^1}$$
$$= \frac{9.25 \text{ x } 10^{-11} \frac{\text{M}}{\text{s}}}{[1.85 \text{ x } 10^{-4} \text{ M}]^1[0.25 \text{ M}]^1}$$
$$= 2.00 \text{ x } 10^{-6} \text{ M}^{-1} \cdot \text{sec}^{-1}$$

CHEM 1515

at 100 °C.	$2NO_2(g) +$	$O_3(g) \rightarrow N_2O_5(g)$	$+ O_2(g)$
Exp. #	[NO ₂]	[O ₃]	initial rate $\left(\frac{M}{s}\right)$
1	.65 M	.80 M	2.61 x 10 ⁴
2	1.10 M	.81 M	4.40 x 10 ⁴
3	1.70 M	1.55 M	1.32 x 10 ⁵

PS5.3. The following initial rate data were collected for the reaction

a) Determine the reaction order for NO_2 and O_3 .

The reaction is first order for NO_2 and first order for O_3 .

To determine the order with respect to NO_2 experiments 1 and 2 will be used since the concentration of O_3 is effectively constant.

$$\frac{\text{rate}_2}{\text{rate}_1} = \frac{\text{k}_2[\text{NO}_2]_2^{\text{m}}[\text{O}_3]_2^{\text{m}}}{\text{k}_1[\text{NO}_2]_1^{\text{m}}[\text{O}_3]_1^{\text{m}}}$$

the rate constant and [O₃] are constant.
$$\frac{4.40 \text{ x } 10^4 \frac{\text{M}}{\text{s}}}{2.61 \text{ x } 10^4 \frac{\text{M}}{\text{s}}} = \left(\frac{1.10 \text{ M}}{0.65 \text{ M}}\right)^{\text{m}}$$
$$\frac{1.68}{1 = \text{m}} = (1.69)^{\text{m}}$$

To determine the order of the reaction with respect to O_3 experiments 2 and 3 can be used.

$$\frac{\text{rate}_3}{\text{rate}_2} = \frac{\text{k}_3[\text{NO}_2]_3^{\text{I}}[\text{O}_3]_2^{\text{n}}}{\text{k}_2[\text{NO}_2]_2^{\text{I}}[\text{O}_3]_2^{\text{n}}}$$

$$\frac{1.32 \text{ x } 10^5 \frac{\text{M}}{\text{s}}}{4.40 \text{ x } 10^4 \frac{\text{M}}{\text{s}}} = \left(\frac{1.70}{1.10}\right)^1 \left(\frac{1.55}{0.81}\right)^{\text{n}}$$

$$3.00 = 1.55 \cdot 1.94^{\text{n}}$$

$$1.94 = 1.94^{\text{n}}$$

$$n = 1$$

The reaction is second order overall. overall order = m + n = 2c) Write the specific rate law for the reaction.

rate =
$$k[NO_2]^1[O_3]^1$$

d) Determine the rate constant for the reaction (include units).

$$k = \frac{\text{rate}}{[NO_2]^1[O_3]^1}$$
$$= \frac{2.61 \times 10^4 \text{ M}}{[0.65 \text{ M}]^1[0.80 \text{ M}]^1}$$
$$= 5.02 \times 10^4 \text{ M}^{-1} \cdot \text{sec}^{-1}$$

PS5.4. The reaction

$$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$$

follows simple first order kinetics. If the [SO₂Cl₂]₀ is 0.582 M,

a) calculate the rate constant for the reaction if it takes 1.25×10^2 s for the concentration of SO₂Cl₂ to fall to 0.309 M.

 $\ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -kt \qquad \ln \frac{[0.309 \text{ M}]}{[0.582 \text{ M}]_0} = -k(1.25 \text{ x } 10^2)$ $\ln 0.531 = -k(1.25 \text{ x } 10^2)$ $-0.633 = -k(1.25 \text{ x } 10^2)$ $k = 5.06 \text{ x } 10^{-3} \text{ s}^{-1}$

b) calculate the half-life for the reaction. (When the $[SO_2Cl_2]_0 = 0.582 \text{ M.}$)

$$t_{1/2} = \frac{0.693}{k}$$
 $t_{1/2} = \frac{0.693}{5.06 \text{ x } 10^{-3} \text{ s}^{-1}} = 137 \text{ s}^{-1}$

c) how long will it take for the
$$[SO_2Cl_2]$$
 to fall to 0.219 M?
 $\ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -kt$
 $\ln \frac{[0.219 \text{ M}]}{[0.582 \text{ M}]_0} = -5.06 \text{ x } 10^{-3} \text{ s}^{-1}(t)$
 $\ln 0.376 = -5.06 \text{ x } 10^{-3} \text{ s}^{-1}(t)$
 $-.977 = -5.06 \text{ x } 10^{-3} \text{ s}^{-1}(t)$
 $t = 193 \text{ s}$
d) what is the $[SO_2Cl_2]$ after 350 s? (When $[SO_2Cl_2]_0 = 0.156 \text{ M.}$)
 $\ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -kt$
 $\ln \frac{[SO_2Cl_2]}{[0.156 \text{ M}]_0} = -5.06 \text{ x } 10^{-3} \text{ s}^{-1}(350 \text{ s}^{-1})$
 $\ln [SO_2Cl_2] - \ln[0.156 \text{ M}]_0 = -1.77$
 $\ln [SO_2Cl_2] = -1.77 + \ln[0.156 \text{ M}]_0 = -3.63$

$$\ln [SO_2Cl_2] = -3.63$$

$$[SO_2Cl_2] = e^{-363} = 0.0266 M$$

e) calculate the fraction of SO₂Cl₂ that remains after 160 s.

$$\ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -kt \qquad \ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -5.06 \times 10^{-3} \text{ s}^{-1}(160 \text{ s})$$

$$\ln \frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = -0.810$$

$$\frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = e^{-0.810}$$

$$\frac{[SO_2Cl_2]}{[SO_2Cl_2]_0} = 0.445 \qquad [SO_2Cl_2]_t = 0.445[SO_2Cl_2]_0$$

PS5.5. The reaction

$$CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$$

follows simple second order kinetics. When the $[CH_3CHO]_0 = 0.0120$ M the half-life is 8.75 s.

a) Calculate the rate constant for the reaction.

$$t_{1/2} = \frac{1}{k[CH_3CHO]_0} \quad k = \frac{1}{t_{1/2}[CH_3CHO]_0}$$

$$k = \frac{1}{8.75 \ s(0.0120 \ M)} = 9.52 \ s^{-1} \cdot M^{-1}$$

b) How long will it take for the [CH₃CHO] to fall from 0.0120 M to 2.45 x 10^{-3} M?

$$\frac{1}{[CH_{3}CHO]} - \frac{1}{[CH_{3}CHO]_{0}} = kt$$

$$\frac{1}{2.45 \times 10^{-3} \text{ M}} - \frac{1}{0.0120 \text{ M}} = 9.52 \text{ M}^{-1} \cdot \text{s}^{-1} (t)$$

$$t = 34.1 \text{ s}$$

c) What is the [CH₃CHO] after 7.0 minutes if [CH₃CHO]₀ = 0.245 M? 1 1

$$\frac{1}{[CH_{3}CHO]} - \frac{1}{[CH_{3}CHO]_{0}} = kt$$

$$\frac{1}{[CH_{3}CHO]} - \frac{1}{0.245 \text{ M}} = 9.52 \text{ M}^{-1} \cdot \text{s}^{-1} (7 \text{ min}) \left(\frac{60 \text{ s}}{1 \text{ min}}\right)$$

$$\frac{1}{[CH_{3}CHO]} = 3998 \text{ M}^{-1} + \frac{1}{0.245 \text{ M}}$$

$$[CH_{3}CHO] = 2.50 \text{ x } 10^{-4} \text{ M}$$

d) How long will it take for the [CH₃CHO] to decrease to 0.166 of its original concentration when the [CH₃CHO]₀ = 0.245 M?

$$\frac{1}{[CH_{3}CHO]} - \frac{1}{[CH_{3}CHO]_{0}} = kt$$

$$\frac{1}{0.0407 \text{ M}} - \frac{1}{0.245 \text{ M}} = 9.52 \text{ M}^{-1} \cdot \text{s}^{-1} (t)$$

$$t = 2.15 \text{ s}$$

PS5.6. C₃H₆ re-arranges from a cyclic structure to a straight chain structure according to the following equation;

the rate constant for the decomposition is $5.5 \ge 10^{-4} = 1 = 10^{\circ}$ C. a) What is the order of the reaction?

1st order based on the unit of the rate constant

b) How long would it take for 15.00 % of a sample of C_3H_6 to decompose at 500 °C and 1 atm?

Since the reaction is first order we do not need to know the initial concentration of $C_3H_6(g)$. The time required for 15% of a sample to reacted is equivalent to the time when the concentration of $C_3H_6(g)$ is 85% of the initial $C_3H_6(g)$ concentration. That is,

$$\frac{[C_{3}H_{6}]_{t} = 0.85 \ [C_{3}H_{6}]_{0}}{\frac{\ln \ [C_{3}H_{6}]_{t}}{[C_{3}H_{6}]_{0}} = -kt}$$

$$\frac{\ln \ 0.85 \ [C_{3}H_{6}]_{0}}{[C_{3}H_{6}]_{0}} = -5.5 \ x \ 10^{-4} \ sec^{-1} \ (time)$$

$$\ln \ 0.85 = -5.5 \ x \ 10^{-4} \ sec^{-1} \ (time)$$

$$-0.163 = -5.5 \ x \ 10^{-4} \ sec^{-1} \ (t)$$

$$295 \ sec = time$$

If the students need a concentration it can be calculated using PV=nRT recall

$$PV = nRT \quad or \frac{n}{V} = \frac{P}{RT}$$
$$M = \frac{1 \text{ atm}}{0.0821 \frac{L \cdot atm (298 \text{ K})}{\text{mol} \cdot \text{K}}}$$
$$[C_3H_6]_0 = 0.0409 \text{ M}$$

So 15% reacting leaves 85% unreacted $\begin{bmatrix} C_3H_6 \end{bmatrix}_t = 0.0348 \text{ M}$ $\frac{1 \text{ n } 0.0348}{0.0409} = -5.5 \text{ x } 10^{-4} \text{ sec}^{-1} \text{ (time)}$ $\ln 0.85 = -5.5 \text{ x } 10^{-4} \text{ sec}^{-1} \text{ (time)}$ $\ln 0.85 = -5.5 \text{ x } 10^{-4} \text{ sec}^{-1} \text{ (time)}$ 295 sec = time c) What is the half-life of the reaction? The half-life of the reaction is

f-life of the reaction is

$$t_{1/2} = \frac{0.693}{k}$$

 $= \frac{0.693}{5.5 \times 10^{-4} \text{ sec}^{-1}}$
 $= 1.26 \times 10^3 \text{ sec}$

d) How long would it take for 15.00 % of a sample of C_3H_6 to decompose at 500 °C and 10 atm?

For first order reactions, the time required for a specific amount of reaction to occur is independent of the initial concentration. Therefore, the time is identical to part b). If the $[C_3H_6]_0$ is determined it should be

$$M = \frac{P}{RT}$$
$$= \frac{10 \text{ atm}}{0.0821 \frac{L \cdot \text{atm} (298 \text{ K})}{\text{mol} \cdot \text{K}}}$$
$$= 0.409 \text{ M}$$

Performing the same calculations as used in part b) will yield the same answer as part b).

- PS5.7. The second-order thermal decomposition of hydrogen bromide, HBr(g), has a half-life of 2.74 s at a given temperature when the initial concentration of HBr is 0.0714 M.
 - a) What is the concentration of hydrogen bromide after 3.16 s?

$$t_{1/2} = \frac{1}{k[HBr]_0} \qquad k = \frac{1}{t_{1/2}[HBr]_0}$$

$$k = \frac{1}{2.74 \cdot s(0.0714 \text{ M})} = 5.11 \text{ s}^{-1} \cdot \text{M}^{-1}$$

$$\frac{1}{[HBr]} - \frac{1}{[HBr]_0} = kt$$

$$\frac{1}{[HBr]} - \frac{1}{0.0714 \text{ M}} = 5.11 \text{ M}^{-1} \cdot \text{s}^{-1} (3.16 \text{ s})$$

$$\frac{1}{[HBr]} = 14.0 \text{ M}^{-1} + \frac{1}{0.0714 \text{ M}}$$

$$[HBr] = 3.32 \text{ x} 10^{-2} \text{ M}$$

b) How long will it take for 20.0 % of the sample to decompose? $[HBr]_{t} = 0.80[HBr]_{0} = 0.80 (0.0714 \text{ M}) = 0.0571 \text{ M}$ $\frac{1}{[HBr]} - \frac{1}{[HBr]_{0}} = \text{kt}$ $\frac{1}{0571 \text{ M}} - \frac{1}{0.0714 \text{ M}} = 5.11 \text{ M}^{-1} \cdot \text{s}^{-1} (t)$ t = 0.686 s

CHEM 1515

PS5.8. The rate constant for the gas phase decomposition of ozone

$$2O_3(g) \rightarrow 3O_2(g)$$

is 0.0140 M⁻¹·sec⁻¹ at 80 °C. a) How long will it take for 90 % of a sample of ozone to decompose given that the initial concentration is $6.00 \times 10^{-3} \text{ M}$?

$$\frac{1}{[O_3]_t} - \frac{1}{[O_3]_0} = kt$$

$$0.10 \cdot 6.00 \times 10^{-3} M = 6.00 \times 10^{-4} M \text{ remaining}$$

$$\frac{1}{[6 \times 10^{-4} M]} - \frac{1}{6 \times 10^{-3} M} = 0.0140 \text{ M}^{-1} \cdot \text{s}^{-1} (t)$$

$$1500 \text{ M}^{-1} = 0.0140 \text{ M}^{-1} \cdot \text{s}^{-1} (t)$$

$$t = \frac{1500 \text{ M}^{-1}}{0.0140 \text{ M}^{-1} \cdot \text{s}^{-1}} = 1.19 \times 10^5 \text{ seconds}$$

b) What is the half-life of the reaction for this initial concentration?

$$t_{1/2} = \frac{1}{k[O_3]_0}$$

$$t_{1/2} = \frac{1}{0.0140 \text{ M}^{-1} \cdot \text{s}^{-1}(6.00 \text{ x } 10^{-3} \text{ M})} = 1.19 \text{ x } 10^4 \text{ s}$$

PS5.9. In the reaction

$$\operatorname{NO}_2(g) \longrightarrow \operatorname{NO}(g) + \frac{1}{2}\operatorname{O}_2(g)$$

the [NO₂] was followed with time and the data shown below was obtained.

Time(s)	[NO ₂](M)
0	0.0831
4.2	0.0666
7.9	0.0567
11.4	0.0497
15	0.0441

Determine the order of the reaction and its half-life. (Include graphs of your data to support your conclusion. Be sure <u>all</u> plots are included.)

PS5.10a. Draw the Lewis structure and name the following compounds; i) CH₃CH(CH₃)C(CH₃)₂CH₂CH₂CH₃

2, 3, 3-trimethylhexane

ii) CH₃CH(CH₃)CH₂CH₂C(CH₃)₂CH₂CH₂CH(CH₃)CH₃

2, 5, 5, 8-tetramethylnonane

