Chem 1515
Problem Set \#7
Fall 2001

Name \qquad
TA Name \qquad
Lab Section \# \qquad

ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, October 24, 2001.

PS7.1. Given the reaction

$$
3 \mathrm{O}_{2}(g)+4 \mathrm{NH}_{3}(g) \rightleftarrows 6 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{~N}_{2}(g)
$$

Initially (before any reaction occurs) a 1.00 liter reaction vessel at some temperature contains 0.502 moles of O_{2} and 0.791 moles of NH_{3} and no water or nitrogen. Consider the following:
a) If 0.245 moles of O_{2} react, how many moles of NH_{3} must react and how many moles of $\mathrm{H}_{2} \mathrm{O}$ and N_{2} are formed? How many moles of $\mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} remain after completion of the reaction?

Note: the change row was determined using the reaction stoichiometry calculations below,
$0.245 \mathrm{~mol} \mathrm{O}\left(\frac{4 \mathrm{~mol} \mathrm{NH}_{2}}{3 \mathrm{molO}_{2}}\right)=0.327 \mathrm{~mol} \mathrm{NH}_{3}$ reacting
$0.245 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}\left(\frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{molO}_{2}}\right)=0.490 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ formed
$0.245 \mathrm{~mol} \mathrm{O}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.163 \mathrm{~mol} \mathrm{~N} 2$ formed
The moles remaining row is determined by adding the moles reacting or forming (change row) to the initial amount of each species.
b) If 0.304 moles of NH_{3} react, how many moles of O_{2} must react and how many moles of $\mathrm{H}_{2} \mathrm{O}$ and N_{2} are formed? How many moles of $\mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} remain after completion of the reaction?

Note: the change row was determined using the reaction stoichiometry calculations below,
$0.304 \mathrm{~mol} \mathrm{NH}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{NH}}\right)=0.327 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ reacting
$0.304 \mathrm{~mol} \mathrm{NH}\left(\frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{NH}_{3}}\right)=0.490 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ formed
$0.304 \operatorname{mol~\mathrm {NH}_{3}}\left(\frac{2 \mathrm{~mol} \mathrm{~N}_{2}}{4 \mathrm{~mol} \mathrm{NH}_{3}}\right)=0.152 \mathrm{~mol} \mathrm{~N}_{2}$ formed
c) If ' $\mathbf{3 x}$ ' moles of O_{2} react, how many moles of NH_{3} must react and how many moles of $\mathrm{H}_{2} \mathrm{O}$ and N_{2} are formed(in terms of ' \mathbf{x} ')? How many moles of O_{2}, $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} remain after completion of the reaction?

d) If 0.503 moles of $\mathrm{H}_{2} \mathrm{O}$ are formed, how many moles of N_{2} are formed and how many moles of O_{2} and NH_{3} must react? How many moles of $\mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} remain after completion of the reaction?

	30_{2}	$+4 \mathrm{NH}_{3}$	$\vec{〔}$	$6 \mathrm{H}_{2} \mathrm{O}$	+
initial	.502	.791	0	0	
change	-.252	-.335	+.503	+.168	
moles remaining(final)	.250	.456	.503	.168	

Note: the change row was determined using the reaction stoichiometry calculations below,
$0.503 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{3 \mathrm{molO}_{2}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.252 \mathrm{~mol} \mathrm{O}_{2}$ reacting
$0.503 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{4 \mathrm{~mol} \mathrm{NH}_{3}}{6 \mathrm{~mol} \mathrm{H}} \mathrm{H}_{2} \mathrm{O}\right)=0.335 \mathrm{~mol} \mathrm{NH}_{3}$ formed
$0.503 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{2 \mathrm{~mol} \mathrm{~N}_{2}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.168 \mathrm{~mol}_{2}$ formed
PS7.2. Write the equilibrium expression for each of the following chemical equations;

b) $2 \mathrm{NO}\left\langle\Delta y+\mathrm{O}_{2}\left\langle y y^{\prime} \rightleftarrows 2 \mathrm{NO}_{2}\left\langle\Delta y^{\prime} \quad \mathrm{K}_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{1}\left[\mathrm{NO}^{2}\right.} \quad\right.\right.\right.$ or $\quad \mathrm{K}_{\mathbf{1}}=\frac{\mathbf{P}^{2} \mathrm{NO}_{2}}{\mathbf{P}^{1} \mathrm{o}_{2} \cdot \mathbf{P}^{2} \mathbf{N O}}$

d) $2 \mathrm{~N}_{2} \mathrm{O}\left\langle\langle y\rangle+\mathrm{O}_{2}\left\langle\langle y\rangle \nLeftarrow 4 \mathrm{NO}\left\langle\langle y\rangle \quad \mathrm{K}_{e}=\frac{\left[\mathrm{NO}^{4}\right.}{\left[\mathrm{N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{O}_{2}\right]^{1}} \quad\right.\right.\right.$ or $\quad \mathrm{K}_{1}=\frac{\mathrm{P}^{4} \mathrm{HO}}{\mathbf{P}^{2} \mathbf{H}_{2} \mathrm{O} \cdot \mathbf{P}^{1}}$

PS7.3. In each of the following you are given the equation for an equilibrium system and the magnitude of the equilibrium constant. Calculate the new equilibrium constant for the reaction in the alternative form;

Equilibrium reaction Equilibrium constant Alternative reaction
a) $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}(g) \quad 4.7 \times 10^{-31} \quad \frac{1}{2} \mathrm{~N}_{2}(g)+\frac{1}{2} \mathrm{O}_{2(g)} \rightleftarrows \mathrm{NO}(g)$
$K_{\text {alternative }}=\sqrt{K}=\sqrt{4.7 \times 10^{-31}}=6.86 \times 10^{-16}$
b) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad 1.4 \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$K_{\text {alternative }}=\frac{1}{K}=\frac{1}{1.4}=7.14 \times 10^{-1}$
c) $6 \mathrm{ClO}_{3} \mathrm{~F}(g) \rightleftarrows 2 \mathrm{ClF}(g)+4 \mathrm{ClO}(g)$
$32.6 \quad \frac{1}{3} \mathrm{ClF}(g)+\frac{2}{3} \mathrm{ClO}(g)+\frac{7}{6} \mathrm{O}_{2}(g)$

$$
+7 \mathrm{O}_{2}(g)+2 \mathrm{~F}_{2(g)} \quad+\frac{1}{3} \mathrm{~F}_{2}(g) \rightleftarrows \mathrm{ClO}_{3} \mathrm{~F}(g)
$$

$$
K_{\text {alternative }}=\frac{1}{\sqrt[6]{\mathrm{K}}}=\frac{1}{\sqrt[6]{32.6}}=5.59 \times 10^{-1}
$$

PS7.4. Equilibrium constants for the following reactions have been determined at 298 K :

$$
\begin{array}{ll}
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g) & \mathrm{K}_{1}=4.7 \times 10^{-31} \\
2 \mathrm{NO}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{O}_{2(g)} & \mathrm{K}_{2}=4.35 \times 10^{-13}
\end{array}
$$

Calculate K (at the same temperature) for the reaction

$$
\frac{1}{2} \mathrm{~N}_{2}(g)+\mathrm{O}_{2(g)} \rightleftarrows \mathrm{NO}_{2}(a q) \quad \mathrm{K}_{3}=?
$$

To solve
We need to reverse the second equation;
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)$
Then we can add the two equations together;
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{K}_{1}=4.7 \times 10^{-31}$
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{2 \text { new }}=\frac{1}{\mathrm{~K}_{2}}=\frac{1}{4.35 \times 10^{-13}}$
$\mathbf{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) \quad \mathrm{K}_{1} \cdot \frac{1}{\mathrm{~K}_{2}}$
Now multiply the equation by $1 / 2$ to get
$\frac{1}{2} \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows \mathrm{NO}_{2}(g)$
$\sqrt{\frac{K_{1}}{K_{2}}}=\sqrt{\frac{4.7 \times 10^{-31}}{4.35 \times 10^{-13}}}=1.04 \times 10^{-9}$

PS7.5. The reaction

$$
\mathrm{NOBr}(g) \rightleftarrows \mathrm{NO}(g)+\frac{1}{2} \mathrm{Br}_{2(g)}
$$

has been carefully studied at $350^{\circ} \mathrm{C}$ and the K_{c} is 0.079 . Calculate Q and determine which direction (left-to-right or right-to-left) will the reaction proceed to establish equilibrium under each of the following initial conditions?
a) $[\mathrm{NOBr}]_{\mathrm{o}}=0.100 \mathrm{M}:[\mathrm{NO}]_{\mathrm{o}}=0:\left[\mathrm{Br}_{2}\right]_{\mathrm{o}}=0$

$$
\mathrm{Q}=\frac{[\mathrm{NO}]_{\text {init }}\left[\mathrm{Br}_{2}\right]^{1 / 2}}{[\mathrm{NOBr}]_{\text {init }}}=\frac{(\mathrm{O})(\mathrm{O})^{1 / 2}}{.1}=0: \mathrm{Q}<\mathrm{K}_{\mathrm{c}}: \mathrm{L} \rightarrow \mathrm{R}
$$

b) $[\mathrm{NOBr}]_{\mathrm{o}}=0:[\mathrm{NO}]_{\mathrm{o}}=0.100 \mathrm{M}:\left[\mathrm{Br}_{2}\right]_{\mathrm{o}}=0.100 \mathrm{M}$

$$
Q=\frac{[\mathrm{NO}]_{\text {init }}\left[\mathrm{Br}_{2}\right]^{1 / 2}}{[\mathrm{NOBr}]_{\text {init }}}=\frac{(.1)(.1)^{1 / 2}}{0}=\text { very large }: Q>K_{c}: R \rightarrow L
$$

c) $[\mathrm{NOBr}]_{\mathrm{o}}=0.100 \mathrm{M}:[\mathrm{NO}]_{\mathrm{o}}=0:\left[\mathrm{Br}_{2}\right]_{\mathrm{o}}=0.100 \mathrm{M}$

$$
\mathrm{Q}=\frac{[\mathrm{NO}]_{\text {init }}\left[\mathrm{Br}_{2}\right]^{1 / 2}}{[\mathrm{NOBr}]_{\text {init }}}=\frac{(0)(.1)^{1 / 2}}{0}=0: \mathbf{Q}<K_{\mathrm{c}}: \mathbf{L} \rightarrow \mathbf{R}
$$

d) $[\mathrm{NOBr}]_{\mathrm{o}}=0.100 \mathrm{M}:[\mathrm{NO}]_{\mathrm{o}}=0.100 \mathrm{M}:\left[\mathrm{Br}_{2}\right]_{\mathrm{o}}=0.100 \mathrm{M}$

$$
Q=\frac{[\mathrm{NO}]_{\text {init }}\left[\mathrm{Br}_{2}\right]^{1 / 2}}{[\mathrm{NOBr}]_{\text {init }}}=\frac{(0.1)(.1)^{1 / 2}}{0.1}=.316: \mathbf{Q}>K_{c}: R \rightarrow \mathbf{L}
$$

e) $[\mathrm{NOBr}]_{\mathrm{o}}=0.200 \mathrm{M}:[\mathrm{NO}]_{\mathrm{o}}=0.0500 \mathrm{M}:\left[\mathrm{Br}_{2}\right]_{\mathrm{o}}=0.100 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{Q}=\frac{[\mathrm{NO}]_{\text {init }}\left[\mathrm{Br}_{2}\right]^{1 / 2}}{[\mathrm{NOBrOB}]_{\text {init }}}=\frac{(0.05)(.1)^{1 / 2}}{0.2}=.079: Q=K_{c}: \text { at } \\
& \text { equilibrium }
\end{aligned}
$$

PS7.6. Consider the reaction

$$
2 \mathrm{H}_{2} \mathrm{~S}(g)+3 \mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{SO}_{2}(g)
$$

for which $\Delta \mathrm{H}_{\mathrm{rxn}}=-1036 \mathrm{~kJ}$. Predict how the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ will change when the equilibrium is disturbed by;
a) Addition of O_{2}
[$\mathrm{H}_{2} \mathrm{O}$] will increase
b) Addition of SO_{2} [$\mathrm{H}_{2} \mathrm{O}$] will decrease
c) Addition of a catalyst [$\mathrm{H}_{2} \mathrm{O}$] will not change
d) Decrease in temperature

$$
\left[\mathrm{H}_{2} \mathrm{O}\right] \text { will increase }
$$

e) Decrease in the volume of the reaction container [$\mathrm{H}_{2} \mathrm{O}$] will increase

PS7.7. In the manufacture of ammonia from its elements hydrogen must be produced on site. An important source of hydrogen is the reforming of methane at high temperature. The reaction which describes the reforming of methane is;

$$
\mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftarrows \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2}(g)
$$

a) A mixture of 1.00 mol of methane and 1.00 mol of water are heated to 1000 K in a 10.0 L flask. The mixture was allowed to reach equilibrium. The amount of unreacted methane was found to be 11.2 g . Calculate the amount of hydrogen at equilibrium.
Using the initial information we can complete the table

	$\mathrm{CH}_{4}(g)$	$+2 \mathrm{H}_{2} \mathrm{O}(g)$	\rightleftarrows	$\mathrm{CO}_{2}(g)$	$\mathbf{4 H}_{2}(g)$
\mathbf{I}	$\mathbf{0 . 1 0 0} \mathbf{M}$	$\mathbf{0 . 1 0 0} \mathbf{M}$		0	0
\mathbf{C}					
\mathbf{E}	$\mathbf{0 . 0 7 7 5} \mathbf{M}$				

From this information we can calculate the change in the $\left[\mathrm{CH}_{4}\right]$.

$$
0.100-0.0775=0.0225 \mathrm{M}
$$

	$\mathrm{CH}_{4}(g)$	$+2 \mathrm{H}_{2} \mathrm{O}(g)$	\rightleftarrows	$\mathrm{CO}_{2}(g)$	$\mathbf{4 H}_{2}(g)$
\mathbf{I}	$\mathbf{0 . 1 0 0} \mathbf{M}$	$\mathbf{0 . 1 0 0} \mathbf{M}$		0	0
C	$\mathbf{- 0 . 0 2 2 5 M}$				
E	$\mathbf{0 . 0 7 7 5 \mathrm { M }}$				

Using the stoichiometry we can calculate $\left[\mathrm{H}_{2} \mathrm{O}\right]$ reacting and the $\left[\mathrm{CO}_{2}\right]$ and [H_{2}] forming.
0.0225 M CH4 $\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molCH}_{4}}\right)=0.0450 \mathrm{M}$
$0.0225 \mathrm{M} \mathrm{CH}_{4}\left(\frac{1 \mathrm{molCO}_{2}}{1 \mathrm{molCH}_{4}}\right)=0.0225 \mathrm{M}$
$0.0225 \mathrm{M} \mathrm{CH}_{4}\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{molCH}_{4}}\right)=0.0900 \mathrm{M}$

	$\mathrm{CH}_{4}(\mathrm{~g})$	$+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	\rightleftarrows	$\mathrm{CO}_{2}(\mathrm{~g})$	4H2(g)
I	0.100 M	0.100 M		0	0
C	-0.0225 M	-0.0450 M		0.0225 M	0.0900 M
E	0.0775 M				

Then we can calculate the concentrations at equilibrium;

	$\mathrm{CH}_{4}(\mathrm{~g})$	$+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	\rightleftarrows	$\mathrm{CO}_{2}(\mathrm{~g})$	4 $\mathrm{H}_{2}(\mathrm{~g}$)
I	0.100 M	0.100 M		0	0
C	-0.0225 M	-0.0450 M		0.0225 M	0.0900 M
E	0.0775 M	0.0550 M		0.0225 M	0.0900 M

b) Calculate the magnitude of the equilibrium constant for the reaction at 1000 K .

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\frac{[0.0225][0.0900]^{4}}{[0.0775][0.0550]^{2}}=6.30 \times 10^{-3}
$$

c) Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \\
& \Delta \mathbf{H}_{\mathrm{f}}^{\circ}-74.9-241.8 \quad-393.5-0 \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right) \\
& \Delta \mathbf{H}_{\mathrm{rxn}}^{\circ}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\text { products })-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\text { reactants }) \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\left(1 \mathrm{~mol}\left(-393.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+4 \mathrm{~mol}\left(0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)\right) \\
& \\
& \quad-\left(1 \mathrm{~mol}\left(-74.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+2 \mathrm{~mol}\left(-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)\right) \\
& \Delta \mathbf{H}_{\mathrm{rxn}}^{\circ}=+165 \mathrm{~kJ}
\end{aligned}
$$

d) Describe the effect on the equilibrium amount of H_{2} produced by each of the following actions;
i) add a catalyst (no effect) iv) increase T to 1200 K (increase)
ii) add CH_{4} (increase) v) transfer mixture to a 15.0 L
flask (increase)
iii) remove CO_{2} (increase)

