Chem 1515
Problem Set \#8 Fall 2001

Name \qquad
TA Name \qquad
Lab Section \# \qquad
ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, October 31, 2001.

PS8.1. A 1.00 liter container initially holds 0.257 moles of NOBr at a given temperature. The reaction which occurs is:

$$
2 \mathrm{NOBr}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)
$$

At equilibrium analysis shows 0.240 moles of NO and 0.120 moles of Br_{2}.
a) Which direction did the reaction proceed to establish (reach) equilibrium?

Reaction proceeds from left to right ($L \rightarrow R$)
b) How many moles of NOBr reacted in order to form 0.240 moles of NO and 0.120 moles of Br_{2} ?

If 0.240 mol of NO are formed in the reaction, then;
$0.240 \mathrm{~mol} \mathrm{NO}\left(\frac{2 \mathrm{~mol} \mathrm{NOBr}}{2 \mathrm{~mol} \mathrm{NO}}\right)=0.240 \mathrm{~mol} \mathrm{NOBr}$ reacted
If 0.120 mol of Br_{2} are formed in the reaction, then;
$0.120 \mathrm{~mol} \mathrm{Br}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{NOBr}}{1 \mathrm{molBr}_{2}}\right)=0.240 \mathrm{~mol} \mathrm{NOBr}$ reacted
c) How many moles of NOBr remain after equilibrium was established?
$[\mathrm{NOBr}]_{\mathrm{eq}}=[\mathrm{NOBr}]_{0}+[\mathrm{NOBr}]_{\text {reacted }}=0.257 \mathrm{M}-0.240 \mathrm{M}$ $[\text { NOBr }]_{\text {eq }}=0.017 \mathrm{M}$
d) What is the magnitude of K_{c} ?

$$
K_{c}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]}{[\mathrm{NOBr}]^{2}}=\frac{[0.240]^{2}[0.120]}{[0.017]^{2}}=23.9
$$

PS8.2. In a container, the partial pressure of NOCl is initially 0.340 atm at a given temperature. The chemical equation which describes the reaction is:

$$
2 \mathrm{NO}(g)+\mathrm{Cl}_{2(g)} \rightleftarrows 2 \mathrm{NOCl}_{(g)}
$$

At equilibrium analysis shows the partial pressure of NO is 0.0916 atm.
a) Which direction did the reaction proceed to establish (reach) equilibrium?

Reaction proceeds from right to left $(\mathbf{R} \rightarrow \mathbf{L})$

b) What is the partial pressure of NOCl which reacted in order for the partial pressure of NO to be 0.0916 atm ?

For the partial pressure of NO to be 0.0916 atm , the amount of NOCl which must react is,
$0.0916 \mathrm{~atm} \mathrm{NO}\left(\frac{2 \mathrm{~atm} \mathrm{NOCl}}{2 \mathrm{~atm} \mathrm{NO}}\right)=0.0916 \mathrm{~atm} \mathrm{NOCl}$
c) What is the partial pressure of Cl_{2} at equilibrium?

Since the initial partial pressure of $\mathbf{C l}_{2}$ is zero, the amount of Cl_{2} formed is equal to the amount at equilibrium.
$0.0916 \mathrm{~atm} \mathrm{NO}\left(\frac{1 \mathrm{~atm} \mathrm{Cl}}{2} 2 \mathrm{~atm} \mathrm{NO}\right)=0.0458 \mathrm{~atm} \mathrm{Cl}_{2}$
$\left(\mathbf{P}_{\mathrm{Cl}_{2}}\right)_{\mathrm{eq}}=\left(\mathbf{P}_{\mathrm{Cl}_{2}}\right)_{0}+\left(\mathbf{P}_{\mathrm{Cl}_{2}}\right)_{\text {forming }}$
$\left(\mathrm{P}_{\mathrm{Cl}_{2}}\right)_{\mathrm{eq}}=0+0.0458 \mathrm{~atm}=0.0458 \mathrm{~atm}$
d) What is the partial pressure of NOCl at equilibrium?

$$
\begin{aligned}
& \left(\mathrm{P}_{\text {NOCl }}\right)_{\text {eq }}=\left(\mathrm{P}_{\mathrm{NOCl}}\right)_{0}-\left(\mathrm{P}_{\text {NOCl }}\right)_{\text {reacted }} \\
& \left(\mathrm{P}_{\text {NOCl }}\right)_{\text {eq }}=0.340 \mathrm{~atm}-0.0916 \mathrm{~atm}=0.248 \mathrm{~atm}
\end{aligned}
$$

e) What is the magnitude of K_{p} ?
$K_{p}=\frac{P^{2} \mathrm{NOCl}}{\mathbf{P}^{2} \mathrm{NO} \cdot \mathrm{P}_{\mathrm{Cl}_{2}}}=\frac{(0.248)^{2}}{(0.0916)^{2}(0.0458)}=160$

PS8.3. A 1.00 liter container holds 1.06 moles of H_{2} and 1.57 moles of CO at a temperature of $162{ }^{\circ} \mathrm{C}$. At this temperature, the following reaction occurs,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(g)}
$$

After equilibrium is established, analysis shows 0.200 moles of $\mathrm{CH}_{3} \mathrm{OH}$ in the container. Calculate the $[\mathrm{CO}]_{\text {eq }},\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}$ and K_{c}.

PS8.4. The following reaction,

$$
2 \mathrm{HI}(g) \rightleftarrows \mathrm{I}_{2}(g)+\mathrm{H}_{2}(g)
$$

occurs at 298 K . If 2.00 mol of HI are placed into a 1.00 liter container and permitted to react, at equilibrium it is found that 20.0% of the HI has decomposed. Calculate K_{c} and K_{p}.

	2HI	H_{2}	I_{2}
initial	2.00	0	0
change	-2x	+ x	+ x
equilibrium	1.60	+. 2	+. 2

At equilibrium, $\mathbf{2 0 \%}$ of the HI has decomposed; therefore, $0.20(2.0 \mathrm{M})=0.4 \mathrm{M}$ is the amount of HI that reacts.
$0.4 \mathrm{M}=2 \mathrm{x}$
$0.2 \mathrm{M}=\mathrm{x}$

Substituting

$$
\begin{aligned}
& K_{c}=\frac{\left[H_{2}\right]\left[I_{2}\right]}{[H I]^{2}}=\frac{(.2)(.2)}{(1.6)^{2}}=0.0156 \\
& K_{p}=K_{c}=.0156
\end{aligned}
$$

PS8.5. A 0.622 gram quantity of COBr_{2} is sealed in a glass bulb of 0.100 L volume and heated to a temperature of $73^{\circ} \mathrm{C}$. At $73^{\circ} \mathrm{C}$ the COBr_{2} partially decomposes according to the equation

$$
\mathrm{COBr}_{2(g)} \rightleftarrows \mathrm{CO}(g)+\mathrm{Br}_{2(g)}
$$

for which $\mathrm{K}_{\mathrm{c}}=0.190$. Calculate the concentration of each species at $73^{\circ} \mathrm{C}$.

$$
0.190=\frac{(x)^{2}}{0.0331-x}
$$

rearranging

$$
x^{2}+0.190 x-6.29 \times 10^{-3}=0
$$

solving the quadratic equation $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{x}=\frac{-0.190 \pm \sqrt{(0.190)^{2}-4(1)\left(-6.29 \times 10^{-3}\right)}}{2(1)}$
$x=\frac{-0.190 \pm 0.248}{2}$
Use only the positive root

$$
\begin{array}{ll}
\mathbf{x}=0.0288 \mathrm{M} & {[\mathrm{CO}]=\left[\mathrm{Br}_{2}\right]=\mathrm{x}=0.0288 \mathrm{M}} \\
{\left[\mathrm{COBr}_{2}\right]=0.0330} & \mathrm{M}-\mathrm{x}=0.0330 \mathrm{M}-\mathbf{0 . 0 2 8 8} \mathrm{M}=0.0042 \mathrm{M}
\end{array}
$$

PS8.6. The equilibrium constant, K_{p}, for the reaction

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftarrows \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

is 7.31. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures:
a) 1.0 atm of CO and 1.0 atm of $\mathrm{H}_{2} \mathrm{O}$.

$7.31=\frac{x^{2}}{(1-x)^{2}}$
taking the square root of both sides

$$
2.70=\frac{\mathrm{x}}{1.0-\mathrm{x}}
$$

solving for x

$$
x=0.730 \mathrm{~atm}
$$

$P_{\mathrm{CO}_{2}}=\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{x}=1.00 \mathrm{~atm}-0.730 \mathrm{~atm}=0.270 \mathrm{~atm}$
$\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}=\mathbf{P}_{\mathrm{CO}}=1-\mathrm{x}=0.730 \mathrm{~atm}$

PS8.6. (CONTINUED)

b) 1.0 atm of $\mathrm{CO}, 1.0 \mathrm{~atm}$ of $\mathrm{H}_{2} \mathrm{O}$ and 1.00 atm of H_{2}.

$$
\begin{aligned}
& \text { final } 1-\mathbf{x} \quad \mathbf{1 - x} \quad 0+\mathbf{x} \quad \mathbf{1 . 0}+\mathbf{x} \\
& K_{p}=\frac{\mathbf{P}_{\mathrm{CO}_{2}} \cdot \mathbf{P}_{\mathrm{H}_{2}}}{\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathbf{P}_{\mathrm{CO}}}=7.31 \\
& 7.31=\frac{x(1+x)}{(1-x)^{2}}
\end{aligned}
$$

rearranging

$$
6.31 x^{2}-15.62 x+7.31=0
$$

solving the quadratic equation

$$
x_{1}=+1.85 \mathrm{~atm} \quad x_{2}=0.627 \mathrm{~atm}
$$

root x_{1} is too large
$\mathbf{P}_{\mathrm{CO}_{2}}=0.627 \mathrm{M}: \mathbf{P}_{\mathrm{H}_{2}}=1.0+\mathrm{x}=1.627 \mathrm{~atm}$

$$
P_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{P}_{\mathrm{CO}}=1.0-\mathrm{x}=0.373 \mathrm{~atm}
$$

c) 1.0 atm of H_{2} and 1.0 atm of CO_{2}.

$$
\begin{array}{rcccc}
& \mathrm{H}_{2} \mathrm{O} & + & \mathrm{CO} & \mathrm{CO} \\
\text { initial } & 0 & 0 & \mathrm{CO}_{2}+\mathrm{H}_{2} \\
\text { change } & +\mathrm{x} & +\mathrm{x} & -\mathrm{atm} & 1.0 \mathrm{~atm} \\
\text { final } & +\mathrm{x} & +\mathrm{x} & 1.0-\mathrm{x} & 1.0-\mathrm{x}-\mathrm{x}=\mathrm{P}_{\mathrm{CO}_{2}(\text { reacting })} \\
& \mathrm{K}_{\mathrm{p}}= & \mathrm{P}_{\mathrm{CO}_{2}} \cdot \mathrm{P}_{\mathrm{H}_{2}} \\
\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathrm{P}_{\mathrm{CO}} & =7.31 \\
& 7.31=\frac{(1-\mathrm{x})^{2}}{\mathrm{x}^{2}}
\end{array}
$$

taking the square root of both sides

$$
\begin{aligned}
2.7 & =\frac{(1-x)}{x} \\
x & =0.270 \mathrm{~atm}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{P}_{\mathrm{CO}}=\mathrm{x}=0.270 \mathrm{~atm}$
$\mathbf{P}_{\mathrm{CO}_{2}}=\mathbf{P}_{\mathrm{H}_{2}}=1-\mathrm{x}=1.00 \mathrm{~atm}-0.270 \mathrm{~atm}=0.730 \mathrm{~atm}$

PS8.7. At 1000 K the equilibrium constant, K_{c}, for the reaction

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{2}(g)
$$

is 0.833 . Calculate the concentrations of all species at equilibrium when 0.200 moles of NO_{2} are placed in a 2.00 L container at 1000 K .

$$
\begin{array}{rccc}
& 2 \mathrm{NO} & +\mathrm{O}_{2} \nleftarrow & 2 \mathrm{NO}_{2} \\
\text { initial } & 0 & 0 & .10 \mathrm{M} \\
\text { change } & +2 \mathrm{x} & +\mathrm{x} & -2 \mathrm{x} \\
\text { final } & 0+2 \mathrm{x} & 0+\mathrm{x} & .10-2 \mathrm{x} \\
\mathrm{~K}_{\mathrm{c}}= & 0.833 & =\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.} \\
& .833 & =\frac{(.10-2 x)^{2}}{(2 \mathrm{x})^{2}(\mathrm{x})} \\
& .833 & \left.=\frac{(.10-2 \mathrm{x})^{2}}{4 \mathrm{NO}_{2}^{3}}\right]_{\text {reacting }}
\end{array}
$$

Oh, no! A cubic equation: it can be solved by iteration x must be greater than 0 , but less than .050. First guess . 02

| Guess x | $(.10-2 x)^{2}$ | $\underline{4 x}^{3}$ | \underline{Q} | \underline{K} | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .02 | 3.6×10^{-3} | 3.2×10^{-5} | 112 | .833 | 1st guess too large |
| .040 | 4.0×10^{-4} | 2.56×10^{-4} | 1.56 | .833 | 2nd guess too large |
| .045 | 1×10^{-4} | 3.64×10^{-4} | .274 | .833 | 2nd guess too small |
| .042 | 2.56×10^{-4} | 2.96×10^{-4} | .864 | .833 | close enough |

$\left[\mathrm{NO}_{2}\right]=.1-2 \mathrm{x}=.1-2(.042)=0.016 \mathrm{M}$
$[\mathrm{NO}]=2 \mathrm{x}=2(.042)=0.084 \mathrm{M} \quad\left[\mathrm{O}_{2}\right]=\mathrm{x}=0.042 \mathrm{M}$
or
you can find the roots using your calculator (assuming it solve polynomials of order of two or greater). You will get the same answer as above, although you must choose the root.

PS8.8. The equilibrium constant, K_{p}, for the reaction

$$
2 \mathrm{NOBr}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)
$$

is 6.25 at $25^{\circ} \mathrm{C}$ and $\Delta \mathrm{H}^{\circ}=34.4 \mathrm{~kJ}$. Calculate the magnitude of the equilibrium constant at $50^{\circ} \mathrm{C}$.
$\ln \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\Delta \mathrm{H}_{\mathrm{rxn}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\ln \frac{\mathrm{K}_{1}}{6.25}=\frac{34400 \mathrm{~J}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}}\left(\frac{1}{298 \mathrm{~K}}-\frac{1}{323 \mathrm{~K}}\right)$
$\ln \frac{K_{1}}{6.25}=1.07$
$\mathrm{e}\left(\ln \frac{\mathrm{K}_{1}}{6.25}\right)=\mathrm{e}^{1.07}$
$\frac{K_{1}}{6.25}=2.93 \quad K_{1}=18.3$

PS8.9. Given the reaction

$$
\mathrm{XeF}_{4}(g) \rightleftarrows \mathrm{Xe}(g)+2 \mathrm{~F}_{2}(g)
$$

A 10.0 liter vessel at 298 K initially contains a sample of XeF_{4} at 0.750 atm . After the reaction achieves equilibrium, the total pressure in the vessel is 1.95 atm. Calculate K_{p} from this data.

PS8.10.The equilibrium constant, K_{c}, for the reaction

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{(g)}
$$

is 2.50×10^{-6} at a particular temperature. If the $\left[\mathrm{N}_{2}\right]_{\mathrm{o}}=2.00 \mathrm{M}$, the $\left[\mathrm{O}_{2}\right]_{\mathrm{o}}=$ 1.00 M and the $[\mathrm{NO}]_{\mathrm{o}}=0 \mathrm{M}$, calculate the equilibrium concentration of all species.

solving quadratic equation

$$
\mathrm{x}_{1}=-1.12 \times 10^{-3} \mathrm{M}: \mathrm{x}_{2}=1.12 \times 10^{-3} \mathrm{M}
$$

Using the positive root $x=1.12 \times 10^{-3} \mathrm{M}$
$[\mathrm{NO}]=2.24 \times 10^{3} \mathrm{M}:\left[\mathrm{N}_{2}\right]=2.00 \mathrm{M}:\left[\mathrm{O}_{2}\right]=1.00 \mathrm{M}$
This problem is a lead into acid/base equilibria. The point being made in this problem is that when the magnitude of the equilibrium constant is very small, the amount reacting is very small compared to the initial amount. By making certain assumptions it will be possible to simplify this calculation eliminating the need for the quadratic equation.

