During Class Invention #

Name(s) with Lab section in Group

Arrhenius Acids, [H+], [OH-] pH and pOH

1a. Define the terms Arrhenius acid and Arrhenius base.

An acid is a substance which, when dissolved in water, increases the concentration of hydrogen ion, $H^+(aq)$. For example, $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$

A base is a substance which, when added to water, increases the concentration of hydroxide ion, $OH^{-}(aq)$. For example, NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq)

b. Write a chemical equation that describes the behavior of an Arrhenius acid in water.

$$\text{HCl}(aq) \rightarrow \text{H}^+(aq) + \text{Cl}^-(aq)$$

c. Write a chemical equation that describes the behavior of an Arrhenius base in water.

$$NaOH(aq) \rightarrow Na^+(aq) + OH^-(aq)$$

2. In the space below, list some examples of Arrhenius acids and Arrhenius bases.

Arrhenius	Arrhenius
Acids	Bases
HCl	NaOH
H ₂ SO ₄	KOH
HC ₂ H ₃ O ₂	Ba(OH) ₂
HBr	Ca(OH) ₂
HClO ₄	

2a. Write the autoionization reaction for water and the equilibrium expression for the autoionization reaction.

$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$
$$K_w = [H^+][OH^-]$$

or another way

$$H_2O(l) + H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$
$$K_w = [H_3O^+][OH^-]$$

b. What is the magnitude of the equilibrium constant at 25 °C for the autoionization reaction of water?

$$K_w = 1.0 \ge 10^{-14}$$

c. What are the concentrations of H⁺ and OH⁻ at 25 °C in pure water?

 $H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$ Initial ____ 0 0 $x = [H_2O]_{reacted}$ Change ----+x +x Equilibrium ----0+x 0+x $K_w = [H^+][OH^-]$ 1.0 x 10⁻¹⁴ = (x)(x) $1.0 \ge 10^{-7} M = x$

d. The [H⁺] in a particular aqueous solution is 1.0×10^{-4} M. Calculate the [OH⁻] for this solution.

$$\begin{split} \mathbf{K}_{\mathbf{w}} &= [\mathbf{H}^+][\mathbf{O}\mathbf{H}^-] \\ &1.0 \ge 10^{-14} = (1.0 \ge 10^{-4} \ \mathrm{M})[\mathbf{O}\mathbf{H}^-] \\ &\frac{1.0 \ge 10^{-14}}{(1.0 \ge 10^{-4} \ \mathrm{M})} = [\mathbf{O}\mathbf{H}^-] \\ &1.0 \ge 10^{-10} \ \mathrm{M} = [\mathbf{O}\mathbf{H}^-] \end{split}$$

e. The $[OH^-]$ in a particular aqueous solution is 1.0×10^{-5} M. Calculate the $[H^+]$ of this solution.

$$K_{w} = [H^{+}][OH^{-}]$$

1.0 x 10⁻¹⁴ = [H^{+}](1.0 x 10⁻⁵ M)
$$\frac{1.0 x 10^{-14}}{1.0 x 10^{-5} M} = [H^{+}]$$

1.0 x 10⁻⁹ M = [H⁺]

f. The [H⁺] in a particular aqueous solution is 6.0 M. Calculate the [OH⁻] of this solution.

$$\begin{split} & K_w = [H^+][OH^-] \\ & 1.0 \ge 10^{-14} = (6.0 \text{ M})[OH^-] \\ & \frac{1.0 \ge 10^{-14}}{6.0 \text{ M}} = [OH^-] \\ & 1.7 \ge 10^{-15} \text{ M} = [OH^-] \text{ note it is possible for the [H^+] or the [OH^-] to be smaller than 1 \ge 10^{-14} \text{ M.} \end{split}$$

3a. Define pH and pOH for aqueous solutions of acids or bases.

pH = -log[H⁺] pOH = -log[OH⁻]

pH + pOH = 14 For neutral aqueous solutions, the pH = 7.

b. Indicate the range of pH which characterizes an acidic solution and the range which characterizes a basic solution.

pH Range	
0 - 6.99	acidic
7	neutral
7.01 - 14	basic

c. Calculate the pH and pOH of a solution with a $[H^+] = 3.68 \times 10^{-8} M$.

$$pH = -log[H^+]$$

$$pH = -log[3.68 \times 10^{-8}]$$

$$pH = -(-7.43)$$

$$pH = 7.43$$

$$pH + pOH = 14$$

$$7.43 + pOH = 14$$

$$pOH = 14 - 7.43$$

$$pOH = 6.57$$

d. Calculate the $[H^+]$ and $[OH^-]$ of a solution with a pH = 4.22.

 $pH = -log[H^+]$ $4.22 = -log[H^+]$ $-4.22 = log[H^+]$ $10^{-4.22} = 10^{log[H^+]}$ $6.03 \times 10^{-5} M = [H^+]$

```
K_w = [H^+][OH^-]
1.0 x 10<sup>-14</sup>= (6.03 x 10<sup>-5</sup>)[OH<sup>-</sup>]
\frac{1.0 x 10^{-14}}{6.03 x 10^{-5}} = [OH^-]
1.66 x 10<sup>-10</sup> M= [OH<sup>-</sup>]
```