Arrhenius Acids, $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right] \mathrm{pH}$ and pOH

1a. Define the terms Arrhenius acid and Arrhenius base.
An acid is a substance which, when dissolved in water, increases the concentration of hydrogen ion, $\mathrm{H}^{+}(\mathrm{aq})$. For example,

$$
\mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

A base is a substance which, when added to water, increases the concentration of hydroxide ion, $\mathrm{OH}^{-}(\mathrm{aq})$. For example,
 $\mathbf{N a O H}(a q) \rightarrow \mathbf{N a}^{+}(a q)+\mathbf{O H}^{-}(a q)$

b. Write a chemical equation that describes the behavior of an Arrhenius acid in water.

$$
\mathbf{H C l}(a q) \rightarrow \mathbf{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

c. Write a chemical equation that describes the behavior of an Arrhenius base in water.

$$
\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

2. In the space below, list some examples of Arrhenius acids and Arrhenius bases.

Arrhenius	Arrhenius
Acids	Bases
$\mathbf{H C l}$	$\mathbf{N a O H}$
$\mathbf{H}_{2} \mathbf{S O}_{\mathbf{4}}$	$\mathbf{K O H}$
$\mathbf{H C}_{\mathbf{2}} \mathbf{H}_{\mathbf{3}} \mathbf{O}_{\mathbf{2}}$	$\mathbf{B a}(\mathbf{O H})_{\mathbf{2}}$
$\mathbf{H B r}$	$\mathbf{C a}(\mathbf{O H})_{\mathbf{2}}$
$\mathbf{H C l O}$	

2a. Write the autoionization reaction for water and the equilibrium expression for the autoionization reaction.

$$
\begin{aligned}
\mathbf{H}_{2} \mathrm{O}(l) & \rightleftharpoons \mathbf{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\mathbf{K}_{\mathbf{w}} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

or another way

$$
\begin{gathered}
\mathbf{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathbf{H}_{3} \mathbf{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\mathbf{K}_{\mathbf{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

b. What is the magnitude of the equilibrium constant at $25^{\circ} \mathrm{C}$ for the autoionization reaction of water?

$$
K_{w}=1.0 \times 10^{-14}
$$

c. What are the concentrations of H^{+}and OH^{-}at $25^{\circ} \mathrm{C}$ in pure water?

$$
\begin{array}{rcccc}
\mathrm{H}_{2} \mathrm{O}(l) & \rightleftharpoons & \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) & \\
\text { Initial } & --- & 0 & 0 & \\
\text { Change } & --- & +\mathbf{x} & +\mathbf{x} & \left.\mathbf{x}=\left[\mathrm{H}_{2} \mathrm{O}\right]\right]_{\text {reacted }} \\
\text { Equilibrium } & --- & 0+\mathbf{x} & 0+\mathrm{x} & \\
\mathrm{~K}_{\mathbf{w}} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] & \\
1.0 \times 10^{-14} & =(\mathbf{x})(\mathbf{x}) & \\
1.0 \times 10^{-7} \mathrm{M} & =\mathbf{x} &
\end{array}
$$

d. The $\left[\mathrm{H}^{+}\right]$in a particular aqueous solution is $1.0 \times 10^{-4} \mathrm{M}$. Calculate the $\left[\mathrm{OH}^{-}\right]$for this solution.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-14}=\left(1.0 \times 10^{-4} \mathrm{M}\right)\left[\mathrm{OH}^{-}\right] \\
& \frac{1.0 \times 10^{-14}}{\left(1.0 \times 10^{-4} \mathrm{M}\right)}=\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-10} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

e. The $\left[\mathrm{OH}^{-}\right]$in a particular aqueous solution is $1.0 \times 10^{-5} \mathrm{M}$. Calculate the $\left[\mathrm{H}^{+}\right]$of this solution.

$$
\begin{gathered}
\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-5} \mathrm{M}\right) \\
\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5} \mathbf{M}}=\left[\mathrm{H}^{+}\right] \\
1.0 \times 10^{-9} \mathrm{M}=\left[\mathrm{H}^{+}\right]
\end{gathered}
$$

f. The $\left[\mathrm{H}^{+}\right]$in a particular aqueous solution is 6.0 M . Calculate the $\left[\mathrm{OH}^{-}\right]$of this solution.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.0 \times 10^{-14}=(6.0 \mathrm{M})\left[\mathrm{OH}^{-}\right] \\
& \frac{1.0 \times 10^{-14}}{6.0 \mathrm{M}}=\left[\mathrm{OH}^{-}\right] \\
& 1.7 \times 10^{-15} \mathrm{M}=\left[\mathrm{OH}^{-}\right] \text {note it is possible for the }\left[\mathrm{H}^{+}\right] \text {or the }\left[\mathrm{OH}^{-}\right] \text {to be } \\
& \quad \text { smaller than } 1 \times 10^{-14} \mathrm{M} .
\end{aligned}
$$

3a. Define pH and pOH for aqueous solutions of acids or bases.

```
\(\mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]\)
\(\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]\)
\(\mathrm{pH}+\mathrm{pOH}=14\)
For neutral aqueous solutions, the \(\mathbf{p H}=7\).
```

b. Indicate the range of pH which characterizes an acidic solution and the range which characterizes a basic solution.

```
pH Range
    0-6.99 acidic
            7 neutral
    7.01-14
    basic
```

c. Calculate the pH and pOH of a solution with $\mathrm{a}\left[\mathrm{H}^{+}\right]=3.68 \times 10^{-8} \mathrm{M}$.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathbf{p H}=-\log \left[3.68 \times 10^{-8}\right] \\
& \mathbf{p H}=-(-7.43) \\
& \mathbf{p H}=7.43 \\
& \mathbf{p H}+\mathbf{p O H}=14 \\
& \mathbf{7 . 4 3}+\mathbf{~ p O H}=14 \\
& \mathbf{p O H}=14-7.43 \\
& \mathbf{p O H}=6.57
\end{aligned}
$$

d. Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of a solution with a $\mathrm{pH}=4.22$.

$$
\begin{array}{lc}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
4.22 & =-\log \left[\mathrm{H}^{+}\right] \\
-4.22 & =\log \left[\mathrm{H}^{+}\right] \\
10^{-4.22} \quad= & 10^{\log \left[\mathrm{H}^{+}\right]} \\
6.03 \times 10^{-5} \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
& \\
\mathrm{K}_{\mathbf{w}} \quad=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
1.0 \times 10^{-14}=\left(6.03 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right] \\
\mathbf{1 . 0 \times 1 0 ^ { - 1 4 }}=\left[\mathrm{OH}^{-}\right] \\
6.03 \times 10^{-5} & \\
1.66 \times 10^{-10} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
\end{array}
$$

