## Thermodynamic Favorability Entropy and Free Energy

WHAT DRIVES A REACTION TO BE THERMODYNAMICALLY FAVORABL

Thermodynamically favored reactions are those that occur without outside intervention. They may occur fast OR slow (that is kinetics).

Some reactions are very fast (like combustion of hydrogen) other reactions are very slow (like diamond turning to graphite)

## What is thermodynamically favored mean/measured?

How do we look at reactions to determine if they are thermodynamically favored or not?

## Physical and Chemical Change

Physical and Chemical Change occur in one direction
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H^{\circ}=-889 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Physical and Chemical Change

Physical and Chemical Change occur in one direction

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& \Delta \mathrm{H}^{\circ}=-889 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The reverse reaction does not happen.
$\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)$
$\Delta H^{\circ}=+889 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Physical and Chemical Change

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Is thermodynamically favored

## The reverse reaction

$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

Is not thermodynamically favored

## ENTHALPY $(\Delta \mathrm{H})$

## heat content

(exothermic reactions are generally favored)

## ENTHALPY ( $\Delta \mathrm{H}$ )

## $1 \mathrm{~mol} \mathrm{Na}^{+}(\mathrm{g})+1 \mathrm{~mol} \mathrm{Cl}^{-}(\mathrm{g})$

$\Delta H$

## $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{s})$

How would you write a reaction? Is the reaction exothermic or endothermic?

## ENTHALPY ( $\Delta \mathrm{H}$ )

## $1 \mathrm{~mol} \mathrm{Na}^{+}(\mathrm{g})+1 \mathrm{~mol} \mathrm{Cl}^{-}(\mathrm{g})$

## $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{s})$

$\mathrm{NaCl}(\mathrm{s})---->\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$ $\Delta \mathrm{H}=+782 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## ENTHALPY ( $\Delta \mathrm{H}$ )

 $\uparrow 1 \mathrm{~mol} \mathrm{Na}^{+}(\mathrm{g})+1 \mathrm{~mol} \mathrm{Cl}^{-}(\mathrm{g})$
## $\Delta H$

## $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{s})$

$\mathrm{NaCl}(\mathrm{s})---->\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$ Why doesn' t a crystal of NaCl become $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-(\mathrm{g})}$ ?

## ENTHALPY ( $\Delta \mathrm{H}$ )

$\square$

## $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{s})$

$\mathrm{NaCl}(\mathrm{s}) \cdots \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ $\Delta \mathrm{H}=+3.90 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## ENTHALPY $(\Delta \mathrm{H})$

Predicting $\Delta H$ for a reaction:
Phase changes:

Intuition:

## ENTHALPY $(\Delta \mathrm{H})$

Predicting $\Delta H$ for a reaction:
Phase changes: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Intuition:

$$
\begin{aligned}
& \mathrm{Na}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})--->\mathrm{H}_{2}(\mathrm{~g})+\mathrm{NaOH}(\mathrm{aq}) \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

## ENTHALPY $(\Delta \mathrm{H})$

Predicting $\Delta H$ for a reaction:
Phase changes: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=+$

Intuition:
$\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})--->\mathrm{H}_{2}(\mathrm{~g})+\mathrm{NaOH}(\mathrm{aq}) \Delta \mathrm{H}=-$

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-
$$

## ENTHALPY ( $\Delta \mathrm{H}$ )

Using the following standard enthalpy of reaction data,

$$
\begin{array}{ll}
2 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-84.68 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

$\Delta H_{\mathrm{f}}{ }^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculate the heat of reaction for the combustion of 1 mol of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.
$\mathrm{C}_{2} \mathrm{H}_{6}(g)+7 / 2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$

## ENTHALPY ( $\Delta \mathrm{H}$ )

Using the following standard enthalpy of reaction data,
$2 \mathrm{C}(s)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-84.68 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H_{\mathrm{f}}{ }^{\circ}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{\mathrm{f}}{ }^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculate the heat of reaction for the combustion of 1 mol of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.
$\mathrm{C}_{2} \mathrm{H}_{6}(g)+7 / 2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ $\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma\left(m \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\right.$ products $\left.)\right)-\Sigma\left(n \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\right.$ (reactants $\left.)\right)$

## ENTHALPY $(\Delta \mathrm{H})$

Using the following standard enthalpy of reaction data,

$$
\begin{array}{ll}
2 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-84.68 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

$\mathrm{C}_{2} \mathrm{H}_{6}(g)+7 / 2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\Sigma\left(m \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\right.$ products $\left.)\right)-\Sigma\left(n \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\right.$ reactants $\left.)\right)$
$\Delta H^{\circ}{ }_{\text {rxn }}=\Sigma\left(2 \cdot \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(g)\right)+3 \cdot \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(l)\right)\right)$
$-\left(1 \cdot \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{6}(g)\right)+7 / 2 \cdot\left(\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{O}_{2}(g)\right)\right)=-1561 \mathrm{~kJ}\right.$ $\mathrm{mol}^{-1}$

## ENTHALPY ( $\Delta \mathrm{H}$ )

Write a chemical equation describing a) and c) and indicate the sign of $\Delta H$
a) Melting ice:
b) what temperature does the process in a) occur naturally;
c) Freezing water:
d) what temperature does the process in a) occur naturally;
e) Is it possible to determine whether a process/change will occur naturally (thermodynamically favored) solely from the $\Delta H$ ?
f) What other factor must be considered to determine whether a change is thermodynamically favored or not?

## ENTROPY ( $\Delta \mathrm{S}$ )



High number of microstates of a system (more microstates is favored) Nature tends toward dispersal! Think about your room at the end of the week!

- think in terms of probability


## ENTROPY ( $\Delta \mathrm{S}$ )



- A thermodynamic quantity that is depended on the number of energetically equivalent possible arrangements of a system.
- think in terms of probability


## ENTROPY ( $\Delta \mathrm{S}$ )

- Probable events have many ways to occur have high entropy;
- Improbable events have very few ways to occur have low entropy;
- Dispersal of position and energy
- Expanding gas


## Statistical Thermodynamics

This is a way to use a particulate level view of matter to help understand the nature of entropy/disorder in terms of how the energy of the system is dispersed.

A microstate is like a snapshot of the system.

## Statistical Thermodynamics

Lets consider a sample of an ideal gas in a container at a given temperature and pressure.

If we look at the distribution of particles in terms of position and energy we can get a better idea of the concept of a microstate.

A snapshot of the sample can be considered a microstate.

## Statistical Thermodynamics

Boltzmann developed the relationship between entropy $(S)$ and the number of microstates (W)

$$
S=k \ln W
$$

## Statistical Thermodynamics

Boltzmann developed the relationship between entropy ( S ) and the number of microstates (W)

$$
\begin{aligned}
\Delta \mathrm{S} & =\mathrm{k} \ln \mathrm{~W}_{\text {final }}-\mathrm{k} \ln \mathrm{~W}_{\text {initial }} \\
\Delta \mathrm{S} & =\mathrm{k} \ln \left(\mathrm{~W}_{\text {final }} / \mathrm{W}_{\text {initial }}\right)
\end{aligned}
$$

For a change of condition $\Delta \mathrm{S}$ is positive if the final condition has more microstates than the initial condition.

## a4le 16.1 The Microstates That Give a Particular Arrangement (State)

In general, the greater the number
of
arrangement s , the higher the entropy of the system!


## Tate 16.1 The Microstates That Give a Particular Arrangement (State)

Arrangement
Microstates


## Predicting the entropy of a system based on physical evidence:



1


2


3

In which container are the particles more dispersed? Has the highest entropy?
In which are there more possible position, and energy microstates?

# Predicting the entropy of a system based on physical evidence: 

- Entropy is largest for gases, then liquids, and finally solids;
- Reactions increasing the number of moles of particles often increase entropy;
- Entropy generally increases with increasing molecular complexity (crystal structure $\mathrm{KCl} \mathrm{vs} \mathrm{CaCl}_{2}$ ) since there are more MOVING electrons!
- When a gas molecule escapes from a solvent, the entropy increases.


## Exercise 2 Predicting Entropy Change

Predict the sign of the entropy change for each of the following processes.

A: Solid sugar is added to water to form a solution.

B: Iodine vapor condenses on a cold surface to form crystals.

## Solution:

A: $+\Delta S$
B: $-\Delta S$

## Sample Problem A

Which of the following has the largest increase in entropy?
a) $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
c) $\mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KNO}_{3}(\mathrm{l})$
d) $\mathrm{C}_{\text {(diamond) }} \rightarrow \mathrm{C}_{\text {(graphite) }}$

## Answer:

a) the substance changes from a highly organized state to a more disorganized state.

## ENTROPY The Second Law of Thermodynamics

- The universe is constantly increasing disorder.
- Rudolph Clausius (you' ll hear lots about him later when we study vapor pressures) 'discovered' it and gave it its symbol.)


## ENTROPY <br> The Third Law of <br> Thermodynamics

- The entropy of a perfect crystal at 0 K is zero.
- not a lot of perfect crystals out there so, entropy values are RARELY ever zero-even elements


## So what?

This means the absolute entropy of a substance can then be determined at any temperature higher than 0 K .
(Handy to know if you ever need to defend why $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}, \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for elements $=$ 0. . . BUT S ${ }^{\circ}$ does not!)

# Calculating Entropy from tables of standard values: 

Just the same as calculating the enthalpy earlier.

## BIG MAMMA,

verse 2
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=\Sigma \mathrm{S}^{\circ}{ }_{\text {(products) }}-\Sigma \mathrm{S}^{\circ}{ }_{\text {(reactants) }}$
$S$ is + when disorder increases (favored)
$S$ is - when disorder decreases

Units are usually J/K• mol (not kJ ---tricky!)
Note: the entropy values for products and reactants are absolute, not (change) in entropy!

## Sample Problem B

Calculate the entropy change at $25^{\circ} \mathrm{C}$, in J/K . mol for:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Given the following absolute entropy data:

$\mathrm{SO}_{2}(\mathrm{~g})$<br>$248.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$<br>$\mathrm{O}_{2}(\mathrm{~g})$<br>$205.3 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$<br>$\mathrm{SO}_{3}(\mathrm{~g})$<br>256.6 J/K $\cdot \mathrm{mol}$

## Solution:

Entropy change $=-188.3 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$

## SUMMARY

## ENTROPY:

$\Delta S=+$ Products have more microstates (randomness, energy more dispersed) compared to reactants. (FAVORED CONDITION)
$\Delta \mathrm{S}=$ - Reactants have more microstates (randomness, energy more dispersed) compared to products. (not favored)

## PREDICTING ENTROPY CHANG

a) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) $\quad 2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
c) $\quad \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NH}_{3}(\mathrm{aq})$
d) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
e) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
f) $\quad \mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{AlBr}_{3}(\mathrm{~s})$

## PREDICTING ENTROPY CHANG

## Reaction

Sign $\Delta S$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
$\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow$ $\mathrm{BaCl}_{2}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ ~0 $\mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{AlBr}_{3}(\mathrm{~s})$

## Consider

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

ignite $\mathbb{\&} r x n$ is fast!

$$
\Delta \mathrm{S}_{\text {system }}=-88.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
$$

Entropy declines
(due mainly to $3 \rightarrow 2$ moles of gas!)

## . . . to confirm we need to know entropy of surroundings

$\Delta \mathrm{H}_{\text {system }}=-483.6 \mathrm{~kJ} / \mathrm{mol}$

## First law of thermodynamics

 demands that this energy is transferred from the system to the surroundings so...$$
-\Delta H_{\text {system }}=\Delta H_{\text {surroundings }}
$$

OR
$-(-483.6 \mathrm{~kJ} / \mathrm{mol})=+483.6 \mathrm{~kJ} / \mathrm{mol}$

## $\Delta S^{\circ}$ <br> surroundings $=$

$\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{T}}$ surroundings- $=\frac{+483.6 \mathrm{~kJ}}{298 \mathrm{~K}}$

$$
=1620 \mathrm{~J} / \mathrm{K}
$$

## Now we can find $\Delta S^{\circ}$

$\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=\Delta S_{\text {universe }}$<br>$$
(-88.9 \mathrm{~J} / \mathrm{K})+(1620 \mathrm{~J} / \mathrm{K})=1530 \mathrm{~J} / \mathrm{K}
$$

Even though the entropy of the system declines, the entropy change for the surroundings is SOOO large that the overall change for the universe is positive.

## Now we can find $\Delta S^{\circ}$

$\Delta S^{\circ}{ }_{\text {system }}+\Delta \mathrm{S}^{\circ}{ }_{\text {surroundings }}=\Delta \mathrm{S}^{\circ}$ universe
$\Delta \mathrm{S}^{\circ}{ }_{\text {system }}-\Delta \mathrm{H}^{\circ}{ }_{\text {system }} / \mathrm{T}=\Delta \mathrm{S}^{\circ}{ }_{\text {universe }}$ Multiply through by -T we get:
$-\mathrm{T} \Delta \mathrm{S}^{\circ}{ }_{\text {system }}+\Delta \mathrm{H}^{\circ}{ }_{\text {system }}=-\mathrm{T} \Delta \mathrm{S}^{\circ}{ }_{\text {universe }}$ Rename -T $\Delta \mathrm{S}^{\circ}$ universe as $\Delta \mathrm{G}^{\circ}{ }_{\text {system }}$
$-\mathrm{T} \Delta \mathrm{S}^{\circ}{ }_{\text {system }}+\Delta \mathrm{H}^{\circ}{ }_{\text {system }}=\Delta \mathrm{G}^{\circ}$

## Now we can find $\Delta S^{\circ}$

$-\mathrm{T} \Delta \mathrm{S}^{\circ}{ }_{\text {system }}+\Delta \mathrm{H}^{\circ}{ }_{\text {system }}=\Delta \mathrm{G}^{\circ}$
Rearrange;
$\Delta H^{\circ}{ }_{\text {system }}-T \Delta S^{\circ}{ }_{\text {system }}=\Delta G^{\circ}$
So if we can calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for a reaction we can determine if the reaction is thermodynamically favored.
Check out the signs: $\Delta H^{\circ}$ is - and $\Delta S^{\circ}$ is + then $\Delta \mathrm{G}^{\circ}$ is $-\ldots .$. thermodynamically favored reaction.

## PREDICTING ENTROPY CHANG

| Reaction | $\Delta H$ |
| :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | + |
| $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$ | - |
| $\begin{gathered} \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \\ \mathrm{BaCl} 2(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NH}_{3}(\mathrm{aq}) \end{gathered}$ | + |
| $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ |  |
| $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | ~0 |
| $\mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{AlBr}_{3}(\mathrm{~s})$ | - |

## Predicting Free Energy CHANC

| Reaction | $\Delta \mathrm{H}^{\circ}(\mathrm{kJ})$ <br> $\mathrm{mol})$ | $\Delta \mathrm{S}^{\circ}$ <br> $(\mathrm{s} / \mathrm{mol} \cdot \mathrm{k})$ |
| :--- | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | +6.01 | +39 |
| $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$ | -1202 | -213 |
| $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow$ | +78 | +428 |
| $\mathrm{BaCl}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NH}_{3}(\mathrm{aq})$ |  |  |
| $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~g}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | -286 | -163 |
| $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~g}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | -803 | -4 |
| $\mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{AlBr}_{3}(\mathrm{~s})$ | -526 | -72 |
|  |  |  |

## FREE ENERGY

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}^{\circ}=44.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta S^{\circ}=119 \mathrm{~J} / \mathrm{mol} \mathrm{K}=0.119 \mathrm{~kJ} / \mathrm{mol} \mathrm{K}$
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta \mathrm{G}^{\circ}=44.0 \mathrm{~kJ} / \mathrm{mol}-298 \mathrm{~K}(0.119 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{K})=44.0 \mathrm{~kJ} / \mathrm{mol}-35.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{G}^{\circ}=+8.5 \mathrm{~kJ} / \mathrm{mol}$ thermodynamically not

## FREE ENERGY

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta \mathrm{H}^{\circ}=44.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{~S}^{\circ}=119 \mathrm{~J} / \mathrm{mol} \mathrm{~K}=0.119 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K} \\
& 0=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& 0=44.0 \mathrm{~kJ} / \mathrm{mol}-\mathrm{T}\left(0.119 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K}^{\circ}\right) \\
& \mathrm{T}=-44,000 \mathrm{~J} \mathrm{~mol}^{-1} /-119 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}= \\
& \\
& 370 \mathrm{~K}
\end{aligned}
$$

## FREE ENERGY

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta \mathrm{H}^{\circ}=44.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{~S}^{\circ}=119 \mathrm{~J} / \mathrm{mol} \mathrm{~K}=0.119 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

$$
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

$$
\Delta \mathrm{G}^{\circ}=44.0 \mathrm{~kJ} / \mathrm{mol}-383 \mathrm{~K}(0.119 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K})=44.0
$$

$$
\mathrm{kJ} / \mathrm{mol}-45.6 \mathrm{~kJ} / \mathrm{mol}
$$

$\Delta \mathrm{G}^{\circ}=-1.6 \mathrm{~kJ} / \mathrm{mol}$ thermodynamically favored

## FREE ENERGY

- Calculation of Gibb' s free energy is what ultimately decides whether a reaction is thermodynamically favored or not.
- NEGATIVE $\Delta$ G's are thermodynamically favored.


## $\Delta \mathrm{G}$ can be calculated one of several

 ways:Big Mamma, verse 3:

$$
\Delta \mathrm{G}_{\mathrm{rxn}}^{\circ}=\sum m \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (products) }-\sum n \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (reactants) }
$$

This works the same way as enthalpy and entropy from tables of standard values!

## Standard molar free energy of format

Same song, 3rd verse.

$$
\Delta G^{\circ}{ }_{f}=0
$$

for elements in standard state

## GRAND Daddy:

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

This puts together all information thus far!

By far, one of the most beneficial equations to learn!

## BIG MAMMA, verse 3:

$$
\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=\Sigma \Delta \mathrm{G}^{\circ} \text { (products) }-\Sigma \Delta \mathrm{G}_{\text {(reactants) }}^{\circ}
$$

## Sample Problem C:

Find the free energy of formation for the oxidation of water to produce hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})
$$

Given the following information:

$$
\begin{array}{lc} 
& \Delta \mathrm{G}^{\circ} \mathrm{f} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & -286 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{O}_{2}(\mathrm{~g}) & 0 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) & -113.8 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

## Solution:

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {(products })}-\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {(reactants) }} \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=2 \Delta \mathrm{G}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})\right)-\left[2 \Delta \mathrm{G}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)+\Delta \mathrm{G}^{\circ}\left(\mathrm{O}_{2}(\mathrm{~g})\right]\right. \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=2^{*}(-114 \mathrm{~kJ} / \mathrm{mol})-\left[2^{*}(-286 \mathrm{~kJ} / \mathrm{mol}+0]\right. \\
& \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=344 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

## Exercise 9 (GRAND Daddy: $\Delta \mathrm{G}=\Delta \mathrm{H}$ Calculating $\Delta \mathrm{H}^{\circ}, \Delta \mathrm{S}^{\circ}$, and $\Delta \mathrm{G}^{\circ}$

Consider the reaction:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

carried out at $25^{\circ} \mathrm{C}$ and 1 atm .

# Calculate $\Delta \mathrm{H}^{\circ}, \Delta \mathrm{S}^{\circ}$, and $\Delta \mathrm{C}$ the following data: 

## Sample Exercise 16.9 Calculating $\Delta H$

Consider the reaction

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g
$$

carried out at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate $\Delta H^{\circ}, \Delta S^{\circ}$, an ing data:

| Substance | $\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ | $S^{\circ}(J / \mathrm{K} \cdot \mathrm{mol})$ |
| :---: | :---: | :---: |
| $\mathrm{SO}_{2}(g)$ | -297 | 248 |
| $\mathrm{SO}_{3}(g)$ | -396 | 257 |
| $\mathrm{O}_{2}(g)$ | 0 | 205 |

## Solution:

$\Delta \mathrm{H}^{\circ}=-198 \mathrm{~kJ} / \mathrm{mol}$ $\Delta \mathrm{S}^{\circ}=-187 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ $\Delta \mathrm{G}^{\circ}=-142 \mathrm{~kJ} / \mathrm{mol}$

## Exercise 10 (Hess' s law of summation) Calculating $\Delta \mathrm{G}^{\circ}$

Using the following data (at $25^{\circ} \mathrm{C}$ ):
$\mathrm{C}_{\text {diamond }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=-397 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {graphite }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=-394 \mathrm{~kJ} / \mathrm{mol}$

Calculate $\Delta G^{\circ}$ for the reaction:
$\mathrm{C}_{\text {diamond }}(\mathrm{s}) \rightarrow \mathrm{C}_{\text {graphite }}(\mathrm{s})$

## Solution:

$\Delta \mathrm{G}^{\circ}=-3 \mathrm{~kJ} / \mathrm{mol}$

## SUMMARY OF FREE ENERGY:

$\Delta G=+$ thermodynamically not favored
$\Delta \mathrm{G}=$ - thermodynamically favored

## Conditions of $\Delta \mathrm{G}$ :

$\Delta H \quad \Delta S \quad$ Result
neg pos thermodynamically favored at all T
pos pos thermodynamically favored at high T
neg neg thermodynamically favored at low T
pos neg thermodynamically not favored, ever

