ACA Part 2 for Extent of a Chemical Reaction Name(s) with Lab section in Group

1. Below are listed three reactions. Associated with each reaction is a 1.0 L container with a particulate level representation of the reaction before the reaction has occurred. To the right is the 1.0 L container with a particulate level representation of the reaction after attaining equilibrium. In each case indicate whether you think the equilibrium constant for the reaction is greater than 1, less than 1 or equal to 1. In each case support your answer with a brief explanation.

a) Reaction I : 
$$A_2(g) + B_2(g) = 2AB(g)$$
 (where  $\Box a$  is  $A_2$  and  $\Box a$  is  $B_2$ )

Container before reaction started

Constant for a Reaction



Container after reaction achieves equilibrium



Is the equilibrium constant for the reaction greater than 1, less than 1 or equal to 1? Explain.

b) Reaction II :  $C_2(g) + D_2(g) \implies 2CD(g)$  (where  $\bigcirc \bigcirc$  is  $C_2$  and  $\bigcirc$  is  $D_2$ )



Is the equilibrium constant for the reaction greater than 1, less than 1 or equal to 1? Explain.



Is the equilibrium constant for the reaction greater than 1, less than 1 or equal to 1? Explain.

d) If any of the cases (K > 1, K < 1 or K = 1) did not appear in the three examples above use the space below to draw the before container, and the equilibrium container for the missing case.

| Container before reaction started | Container after reaction achieves equilibrium |  |
|-----------------------------------|-----------------------------------------------|--|
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |
|                                   |                                               |  |

Explain how your model properly represents the particular case.

2. The following reaction is at equilibrium at a particular temperature

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

and the  $[H_2]_{eq} = 0.012 \text{ M}$ ,  $[I_2]_{eq} = 0.15 \text{ M}$  and  $[HI]_{eq} = 0.30 \text{ M}$ . Calculate the magnitude of K<sub>c</sub> for the reaction.

3. Using the equilibrium constant calculated in b, calculate the magnitude of the equilibrium constant for the following reactions at the same temperature.

i) 
$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

ii) 
$$\frac{1}{2}$$
 H<sub>2</sub>(g) +  $\frac{1}{2}$  I<sub>2</sub>(g)  $\rightleftharpoons$  HI(g)

4. The initial concentration of both  $H_2$  and  $I_2$  is 0.250 M. The reaction occurs as shown below,

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

When equilibrium is achieved the concentration of HI is 0.393 M. Calculate the magnitude of  $K_c$  for the reaction.

 A vessel initially has a partial pressure of NO equal to 0.526 atm and a partial pressure of Br<sub>2</sub> equal to 0.329 atm. At equilibrium the partial pressure of Br<sub>2</sub> is 0.203 atm. Calculate K<sub>p</sub> for the reaction

$$2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$$