THERMODYNAMICS

Calorimetry and Enthalpy

LAWS OF THERMO

- Zeroth Law:
 - Heat flows from hot to cold
- First Law:
 - Energy and matter are conserved
- Second Law:
 - Matter tends towards chaos
- Third Law:
 - Entropy of a pure crystal at 0 K is zero
ENTHALPY
- Heat and temperature
- Heat, amount of substance and ΔT
- Endothermic (+) or Exothermic (-)
- Calculate:
 - Calorimetry
 - Table of standard values
 - Hess’s Law
 - Stoichiometry
 - Bond energies

Heat and Temperature

Molecular Workbench activity

http://workbench.concord.org/database/activities/308.html

Heat – the sum of all of the energy in a system.

Temperature – the average kinetic energy of the particles in the system.

Heat, amount of substance and temperature change

Do the **Before Class Activity**

http://genchem1.chem.okstate.edu/BCEActivities/Personal/PLE15.php
Calorimetry: Constant Pressure

\[q_{\text{hot}} = -q_{\text{cold}} \]
\[q_{\text{metal}} = -q_{\text{water}} \]
\[q_{\text{solv}} = -q_{\text{water \ and \ solute}} \]
\[q_{\text{rxn}} = -q_{\text{solution}} \]

If the heat capacity of the calorimeter is given have to include the heat absorbed or released by the calorimeter.

\[q = \text{mass} \times \text{specific heat} \times \Delta T \]

Heat Flow: Solution Process

Look at simulation

http://genchem1.chem.okstate.edu/BCEActivities/Personal/PLE17.php

Calorimetry: Bomb Calorimeter

\[q_{\text{rxn}} = -(q_{\text{water}} + q_{\text{calorimeter}}) \]
\[q_{\text{water}} = \text{mass}_{\text{water}} \times \text{specific heat}_{\text{water}} \times \Delta T_{\text{water}} \]
\[q_{\text{calorimeter}} = \text{heat capacity}_{\text{calorimeter}} \times \Delta T_{\text{calorimeter}} \]
\[\Delta T_{\text{calorimeter}} = \Delta T_{\text{water}} \]
Predicting exothermic or endothermic reactions

- Enthalpy - ΔH
- Energy content + endo - exo

Units on ΔH°

Enthalpy has units of $\text{kJ mol of reaction}^{-1}$

Units are important!

Formation Reactions

Elements in their standard state forming 1 mol of product in its standard state.
Hess’ Law

State function use to determine ΔH° for new reactions.

\[G24 \text{ – G28} \]

Enthalpy of reaction

\[\Delta H^\circ_{\text{rxn}} = \Sigma m \Delta H^\circ_f(\text{products}) - \Sigma n \Delta H^\circ_f(\text{reactants}) \]

\[G29 \text{ – G40} \]

Bond Energy

\[\Delta H^\circ_{\text{rxn}} = \Sigma m \text{BE}(\text{reactants}) - \Sigma n \text{BE}(\text{products}) \]

\[G41 \text{ – G42} \]