AP Chemistry Prep Session Saturday, December 12, 2009

> John I. Gelder Department of Chemistry Oklahoma State University

http://intro.chem.okstate.edu

Recognizing Oxidation reduction reactions

- Elemental form of a substance reacts or is formed;
- Change in the number of oxygen atoms around an element;
- An increase or decrease in oxidation state;

- $S(s) + O_2(g) \rightarrow SO_2(g)$
- $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- $CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(l)$ $2HgO(s) \rightarrow 2Hg(l) + O_{2}(g)$

- Mg(s) + $Cl_2(g) \rightarrow MgCl_2(s)$
- The solid MgCl₂(s) is actually composed of Mg²⁺ ions and Cl⁻ ions

Electron transfer

- $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$
- The solid MgCl₂(s) is actually composed of Mg²⁺ ions and Cl⁻ ion
- So we can actually write the equation as;
- $Mg(s) + Cl_2(g) \rightarrow Mg^{2+} + 2Cl$

Electron transfer

- Mg(s) + $Cl_2(g) \rightarrow MgCl_2(s)$
- Mg(s) + Cl₂(g) \rightarrow Mg²⁺ + 2Cl⁻
- We can separate this equation into two half reactions
- Mg(s) \rightarrow Mg²⁺ + 2e

Electron transfer

- $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$
- Mg(s) + Cl₂(g) \rightarrow Mg²⁺ + 2Cl⁻
- Mg(s) → Mg²⁺ + 2e⁻ (oxidation) • 2e⁻ + Cl₂(g) → + 2Cl⁻ (reduction)

- Method of half-reactions;
- Oxidation number methods;
- Both have strengths;
- reducing agent (gets oxidized);

- 1. Divide the equation into oxidation and reduction half reactions. [OILRIG]
- Balance all elements besides hydrogen and oxygen.
 Balance O's by adding H₂O's to the appropriate side of each equation.
- Balance H's by adding H+

- Balance the soly adding H*
 Balance the charge by adding electrons. [OILRIG again]
 Multiply the half reactions to make electrons equal for both half-reactions.
 Cancel out any common terms and recombine the two half reactions.
 IF BASIC, neutralize any H* by adding the SAME NUMBER of OH* to EACH side of the balanced equation.

- The oxidation state of a free element is zero.
 The oxidation state of a monatomic ion is equal to its charge.
 The algebraic sum of the oxidation states of all of the atoms in a compound is zero.
 The oxidation state of alkali metals in compounds is 1+; the oxidation state of alkaline earth metals in compounds is 2+.
 In compounds the more electronegative element is always negative.
 In compounds, hydrogen is generally 1+ unless it is with an element which is less electronegative than it is.
 In compounds, oxygen is usually 2-, unless it is a peroxide, in which case it is 1-, or a superoxide when it would have an oxidation state of -1/2.

Investigating oxidation reduction reactions

- Activity Series simulation
- http://introchem.chem.okstate.edu/ DCICLA/Metal-Metallon/home.html

Activity Series

	Half Perstion	
	Hall-Keachon	
	Ag+(aq) + 1e-	Ag(s)
	Cu ²⁺ (aq) + 2e-	Cu(s)
	2H+(aq) + 2e-	H2(s)
	Pb ²⁺ (aq) + 2e-	Pb(s)
	Sn ²⁺ (aq) + 2e-	Sn(s)
	Ni ²⁺ (aq) + 2e-	Ni(s)
	Fe ²⁺ (aq) + 2e-	Fe(s)
	Cr ³⁺ (aq) + 3e-	Cr(s)
	Zn ²⁺ (aq) + 2e-	Zn(s)
	Mg ²⁺ (aq) + 2e-	Mg(s)
	Na+(aq) + 1e-	Na(s)

Voltaic cells

- Oxidation reduction is electron transfer;
- Electrical conductivity is movement of electrons in metals;
- Can we engineer an oxidation reduction reaction to do work?

Voltaic cells

- Voltaic cell simulation
- http://introchem.chem.okstate.edu/ DCICLA/voltaicCell20.html

Important terms

- Anode;
- Anode compartment;
- Cathode;
- Cathode compartment
- Salt bridge
- Direction of electron flow (in wire);
- Direction of cation flow (in salt bridge);
- Direction of anion flow (in salt bridge)

4 Q6a, Q6b, 2004 (B) Q6c, 2002 Q7b, 2001 Q7a

Voltaic cells

- Where is oxidation occurring?
- Where is reduction occurring?
- How are electrons moving?

Difference in electrochemical potential

- E[°]_{cell} = E[°]_{cathode} E[°]_{anode}
- Measuring a difference in cell potential;
- Cannot know absolutely the cell potential of a half-reaction, only the difference;
- So the hydrogen electrode is a standard;

Difference in electrochemical potential

- E°_{cell} = E°_{cathode} E°_{anode}
- Measuring a difference in cell potential;
- So the hydrogen electrode is a standard;
- $2H^+(aq) + 2e^- \rightarrow H_2(g)$ $E^\circ = 0.00 v$

Table of Standard Reduction Potentials

- Reading a table of standard reduction potentials;
- Standard conditions
 - > All ions 1.00 M
 - All gases 1.00 atr
 - > Temperature is 25 °C or 298 K

- E_{cell} = E° (RT/nF) In Q E_{cell} measured cell potential
- R ideal gas constant 8.314 J/mol K
- n the number of electrons transferred F Faraday's constant 96,500 J/volt mol

- $E_{cell} = E^{\circ} (0.059/n) \log Q$