Acids, Bases and pH

1a. Based on the lecture demonstration, complete the following table.

Solution	pH	Equilibrium $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$
0.100 M HCl	$\mathbf{1}$	$\left[\mathbf{H}^{+}\right]=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{- 1}} \mathbf{M}$
$0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathbf{0 . 9}$	$\left[\mathbf{H}^{+}\right]=\mathbf{1 . 2 5} \times \mathbf{1 0}^{-\mathbf{- 1}} \mathbf{M}$
$0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathbf{2 . 8 7}$	$\left[\mathbf{H}^{+}\right]=\mathbf{1 . 3 3 \times 1 0 ^ { - \mathbf { 3 } } \mathbf { M }}$
$0.100 \mathrm{M} \mathrm{NaOH}^{0.100 \mathrm{M} \mathrm{NH}_{3}}$	$\mathbf{1 3}$	$\left[\mathbf{H}^{+}\right]=\mathbf{1 \times 1 0} \mathbf{1 0 - 1 3} \mathbf{M}$

b. How does the measured concentration of the H^{+}compare to the concentration of HCl ?

The $\left[\mathrm{H}^{+}\right]$is equal to the $[\mathrm{HCl}]$.
c. Briefly describe the qualitative relationship between the concentration of a strong acid and its pH .

Strong acids completely dissociate in aqueous solution. Therefore, the $\left[\mathrm{H}^{+}\right]$equals the concentration of the acid formed. The pH of a solution of an acid is $-\log \left[\mathrm{H}^{+}\right]$, or, for strong acids, $-\log [$ acid $]$.
d. How does the measured concentration of the OH^{-}compare to the concentration of NaOH ?

The [OH^{-}] equals the $[\mathrm{NaOH}]$.

e. Briefly describe the qualitative relationship between the concentration of a strong base and its pH .

Strong bases completely dissociate in aqueous solution. Therefore, the [OH^{-}] equals the concentration of the base formed. The pH of a solution of a base is $14-\left(-\log \left[\mathrm{OH}^{-}\right]\right)$, or, for strong bases, $14-(-\log [$ base $])$.
f. Calculate the pH of a 0.450 M HCl solution.

$\mathrm{HCl}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$		
Initial 0.450	0	0
Change-0.450	+. 450	+. 450
Equilibrium 0	+. 450	+.450
$\left[\mathrm{H}^{+}\right]$	$=0.45$	
pH	$=-\log$	
pH	$=-\log$	450]

g. Calculate the pH of a 0.710 M KOH solution.

\[

\]

