During Class Invention Name(s) with Lab section in Group

Atomic Mass Units and Mol \qquad

1. According to our discussion in Chapter 2 the atomic mass unit (amu) is related to grams in the following way;

$$
1 \mathrm{amu}=1.66054 \times 10^{-24} \mathrm{~g}
$$

Using this relationship calculate the mass, in grams, of;
a) a gallium atom who has an isotopic mass of 62.96 amu ;

$$
62.96 \mathrm{amu}\left(\frac{1.66054 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}}\right)=1.05 \times 10^{-22} \mathrm{~g}
$$

b) a molecule of the element bromine;

$$
159.8 \mathrm{amu}\left(\frac{1.66054 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}}\right)=2.65 \times 10^{-22} \mathrm{~g}
$$

c) one formula unit of KI.

$$
166 \mathrm{amu}\left(\frac{1.66054 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}}\right)=2.76 \times 10^{-22} \mathrm{~g}
$$

2. Calculate the mass, in grams, of each of the following;
a) 1000 gallium atoms;

$$
1000 \text { Ga atoms }\left(\frac{1.05 \times 10^{-22} \mathrm{~g}}{1 \text { atom }}\right)=1.05 \times 10^{-19} \mathrm{~g}
$$

b) $\quad 6.023 \times 10^{23}$ gallium atoms;

$$
6.022 \times 10^{23} \mathrm{Ga} \text { atoms }\left(\frac{1.05 \times 10^{-22} \mathrm{~g}}{1 \text { atom }}\right)=63.2 \mathrm{~g}
$$

c) $\quad 6.023 \times 10^{23}$ molecules of Br_{2}

$$
6.023 \times 10^{23} \mathrm{Br}_{2} \text { molecules }\left(\frac{2.65 \times 10^{-22} \mathrm{~g}}{1 \text { molecule }}\right)=159.6 \mathrm{~g}
$$

d) $\quad 6.023 \times 10^{23}$ formula units of KI
6.023×10^{23} KI f.u. $\left(\frac{2.76 \times 10^{-22} \mathrm{~g}}{1 \text { f.u. }}\right)=166 \mathrm{~g}$
3. What is interesting about the answers you calculated in $2 \mathrm{~b}, 2 \mathrm{c}$ and 2 d with regard to the information in 1a, 1 b and 1 c respectively.

Notice that the mass in grams for 6.023×10^{23} of a substance is the same number as the mass of the substance in amu's.

The molar mass is the mass in grams of 1 mol of a substance, and 1 mol of a substance contains 6.023×10^{23} f.u.'s of that substance.
4. What is the mass of 6.023×10^{23} molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$?
6.023×10^{23} molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$ is the number of $\mathrm{C}_{8} \mathrm{H}_{18}$ molecules in $\mathbf{~ m o l}$ of $\mathrm{C}_{8} \mathrm{H}_{18}$. So all we have to do is determine the molar mass of $\mathrm{C}_{8} \mathrm{H}_{18}$.

So the mass can be determine by determining the mass of 1 molecule of in amu's (from the periodic table) and than substituting grams for amu's.

8 C atoms $\left(\frac{12.01 \mathrm{amu}}{1 \mathrm{C} \text { atom }}\right)=96.08 \mathrm{amu}$
18 H atoms $\left(\frac{1.0078 \mathrm{amu}}{1 \mathrm{H} \text { atom }}\right)=12.09 \mathrm{amu}$
$\mathbf{9 6 . 0 8} \mathbf{a m u}+12.09 \mathrm{amu}=108.2 \mathrm{amu}$ for the mass of $\mathbf{1}$ molecule of $\mathrm{C}_{\mathbf{8}} \mathrm{H}_{18}$
108.2 grams is the mass of $\mathbf{1} \mathbf{~ m o l}$, or 6.023×10^{23} molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$
5. Answer each of the following;
a) How many atoms of hydrogen in one molecule of $\mathrm{H}_{2} \mathrm{O}$?

1 molecule of $\mathrm{H}_{2} \mathrm{O}\left(\frac{2 \mathrm{H} \text { atoms }}{1 \text { molecule } \mathrm{H}_{2} \mathrm{O}}\right)$
b) How many atoms of oxygen in one formula unit of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$?

1 formula unit of $\operatorname{Pb}\left(\mathrm{NO}_{3}\right)_{2}\left(\frac{6 \mathrm{O} \text { atoms }}{1 \text { f.u. } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}\right)$
c) How many atoms of carbon in 1 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

1 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left(\frac{6.023 \times 10^{23} \text { molecules } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)\left(\frac{6 \mathrm{C} \text { atoms }}{1 \text { molecule } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)$

