During Class Invention

Name(s) with Lab section in Group

Atomic Mass Units and Mol

1. According to our discussion in Chapter 2 the atomic mass unit (amu) is related to grams in the following way;

Using this relationship calculate the mass, in grams, of;

a) a gallium atom who has an isotopic mass of 62.96 amu;

62.96 amu
$$\left(\frac{1.66054 \text{ x } 10^{-24} \text{ g}}{1 \text{ amu}}\right) = 1.05 \text{ x } 10^{-22} \text{ g}$$

b) a molecule of the element bromine;

159.8 amu
$$\left(\frac{1.66054 \text{ x } 10^{-24} \text{ g}}{1 \text{ amu}}\right) = 2.65 \text{ x } 10^{-22} \text{ g}$$

c) one formula unit of KI.

166 amu
$$\left(\frac{1.66054 \text{ x } 10^{-24} \text{ g}}{1 \text{ amu}}\right) = 2.76 \text{ x } 10^{-22} \text{ g}$$

- 2. Calculate the mass, in grams, of each of the following;
- a) 1000 gallium atoms;

1000 Ga atoms
$$\left(\frac{1.05 \text{ x } 10^{-22} \text{ g}}{1 \text{ atom}}\right) = 1.05 \text{ x } 10^{-19} \text{ g}$$

b) 6.023×10^{23} gallium atoms;

6.022 x 10²³ Ga atoms
$$\left(\frac{1.05 \text{ x } 10^{-22} \text{ g}}{1 \text{ atom}}\right) = 63.2 \text{ g}$$

c) 6.023×10^{23} molecules of Br₂

6.023 x 10²³ Br₂ molecules
$$\left(\frac{2.65 \text{ x } 10^{-22} \text{ g}}{1 \text{ molecule}}\right) = 159.6 \text{ g}$$

d) 6.023×10^{23} formula units of KI

6.023 x 10²³ KI f.u.
$$\left(\frac{2.76 \text{ x } 10^{-22} \text{ g}}{1 \text{ f.u.}}\right) = 166 \text{ g}$$

3. What is interesting about the answers you calculated in 2b, 2c and 2d with regard to the information in 1a, 1b and 1c respectively.

Notice that the mass in grams for 6.023×10^{23} of a substance is the same number as the mass of the substance in amu's.

The molar mass is the mass in grams of 1 mol of a substance, and 1 mol of a substance contains 6.023×10^{23} f.u.'s of that substance.

4. What is the mass of 6.023 x 10²³ molecules of C₈H₁₈?
6.023 x 10²³ molecules of C₈H₁₈ is the number of C₈H₁₈ molecules in 1 mol of C₈H₁₈. So all we have to do is determine the molar mass of C₈H₁₈.

So the mass can be determine by determining the mass of 1 molecule of in amu's (from the periodic table) and than substituting grams for amu's.

8 C atoms $\left(\frac{12.01 \text{ amu}}{1 \text{ C atom}}\right)$ = 96.08 amu 18 H atoms $\left(\frac{1.0078 \text{ amu}}{1 \text{ H atom}}\right)$ = 12.09 amu

96.08 amu + 12.09 amu = 108.2 amu for the mass of 1 molecule of C_8H_{18}

108.2 grams is the mass of 1 mol, or 6.023 x 10^{23} molecules of C₈H₁₈

- 5. Answer each of the following;
- a) How many atoms of hydrogen in one molecule of H_2O ?

1 molecule of
$$H_2O\left(\frac{2 \text{ H atoms}}{1 \text{ molecule } H_2O}\right)$$

b) How many atoms of oxygen in one formula unit of $Pb(NO_3)_2$?

1 formula unit of $Pb(NO_3)_2 \left(\frac{6 \text{ O atoms}}{1 \text{ f.u. } Pb(NO_3)_2}\right)$

c) How many atoms of carbon in 1 mol of $C_6H_{12}O_6$?

$$1 \text{ mol of } C_6H_{12}O_6\left(\frac{6.023 \text{ x } 10^{23} \text{ molecules } C_6H_{12}O_6}{1 \text{ mol } C_6H_{12}O_6}\right) \left(\frac{6 \text{ C atoms}}{1 \text{ molecule } C_6H_{12}O_6}\right)$$