During Class Invention #

Brø nsted-Lowry acid/base Theory

Define the terms Brø nsted-Lowry acid and Brø nsted-Lowry base.

An acid is defined as a substance that donates a proton and a base as a substance that accepts a proton. In the equation below, HCl is a Brø nsted acid because it donates a proton (H⁺) to H₂O. H₂O is a Brø nsted base because it accepts the proton (H⁺) from HCl. On the right-hand side of the reaction, Cl⁻ is a Brø nsted base because it accepts the proton (H⁺) from H₃O⁺. H₃O⁺ is a Brø nsted acid because it donates a proton (H⁺) to Cl⁻.

$HCl(aq) + H_2O(l) \rightleftharpoons$		$Cl^{-}(aq) + H_{3}O^{+}(aq)$	
acid	base	conj	conj
		base	acid

- 1. Identify the Brø nsted-Lowry acid and Brø nsted-Lowry base in each of the following equations.
 - i) $HCl(aq) + H_2O(l) \rightarrow Cl^{-}(aq) + H_3O^{+}(aq)$

 $HCl(aq) + H_2O(l) \iff Cl^{-}(aq) + H_3O^{+}(aq)$ acid base conj conj base acid

ii)
$$\operatorname{NH}_3(aq) + \operatorname{H}_2O(l) \rightarrow OH^-(aq) + \operatorname{NH}_4^+(aq)$$

NH ₃ (aq	$H_2O(l) =$	$\rightarrow \mathrm{NH}_4^+(aq)$	+ $OH^{-}(aq)$
base	acid	conj	conj
		acid	base

- 2. Identify the conjugate bases for each of the following acids.
 - i) NH₄⁺ conjugate base is NH₃
 - ii) H₃PO₄ conjugate base is H₂PO₄-
 - iii) H₂O **conjugate base is OH**⁻

3. Identify the conjugate acid for each of the following bases.

- i) Br⁻ conjugate acid is HBr
- ii) HSO₄⁻ conjugate acid is H₂SO₄
- iii) H₂O **conjugate acid is H₃O+**

4a. In 1i above which acid is stronger, HCl or H₃O⁺? What experiment could be performed to determine which is stronger?

HCl is a stronger acid compared to H_3O^+ . This can be verified by the observation that an aqueous solution containing HCl is a good conductor of electricity. This indicates the solution is a strong electrolyte, which suggests the presence of a high concentration of ions. This means the position of the equilibrium lies on the product side of the equation. If H_3O^+ were the stronger acid, the solution would not conduct electricity at all, or at the most, very poorly.

b. Describe the difference between a strong acid and a weak acid.

A strong acid completely dissociates in water producing a high concentration of ions. Strong acids are strong electrolytes. The concentration of ions can easily be measured using a conductivity apparatus. For strong acids, the [H+] is equal to the concentration of the acid. A weak acid does not completely dissociate in water. Weak acids are weak electrolytes. The [H+] is less than the concentration of the acid.

Strong acids: HCl, HNO₃, H₂SO₄, HClO₄ Weak acids: HC₂H₃O₂, HCN, H₂CO₃, HF

5a. In Exercise 1ii above, which base is stronger, NH₃ or OH⁻? What experiment could be performed to determine which is stronger?

OH⁻ is a stronger base compared to NH₃. This can be verified by the observation that an aqueous solution containing NH₃ is a poor conductor of electricity. This indicates a low concentration of ions in solution which suggests the position of equilibrium lies on the reactant side of the equation. Therefore, OH⁻ prefers to hold the proton, in the form of H₂O, than does NH₃ in the form of NH₄⁺. If NH₃ were a stronger base, the solution would be a strong conductor of electricity due to the presence of a high concentration of ions.

b. Describe the difference between a strong base and a weak base.

A strong base completely dissociates in water producing a high concentration of ions. Strong bases are strong electrolytes. The concentration of ions can easily be measured using a conductivity apparatus. For strong bases, the [OH⁻], is equal to the concentration of the base. A weak base does not completely dissociate in water. Weak bases are weak electrolytes and the [OH⁻] is less than the concentration of the base.

Strong bases: NaOH, Ba(OH)₂, KOH, Ca(OH)₂ Weak bases: NH₃, CH₃NH₂, CH₃CH₂NH₂, (CH₃)₃N