THE COMMON ION EFFECT

Name

Section

1. a. Transfer the pH data you obtained earlier (Acids, Bases and pH, pg. 55 and Salts I, pg. 63) for 0.100 M HC₂H₃O₂ and for 0.100 M NaC₂H₃O₂ and add this data to the following table.

Solution	рН
0.100 M HC ₂ H ₃ O ₂	
0.100 M NaC ₂ H ₃ O ₂	
0.100 M HC ₂ H ₃ O ₂ /	
0.100 M NaC ₂ H ₃ O ₂	

- b. Write the equilibrium expression for the hydrolysis (reaction with water) of the weak acid $HC_2H_3O_2$. What is the K_a for this reaction? Use Le Châtelier's Principle to predict what would happen if you added $NaC_2H_3O_2$ to this solution.
- c. Go to http://introchem.chem.okstate.edu/DCICLA/pHbuffer20.html⁺and complete the previous table for 0.100 M HC₂H₃O₂ / 0.100 M NaC₂H₃O₂. Compare the pH of this solution with your prediction in the previous question.

⁺ If you do not have access to this DCI's Web site link, your instructor will provide you with the data you will need.

- d. Provide an example of an aqueous solution containing a weak base and the soluble salt of the base.
- e. How is the extent of dissociation of a weak acid or weak base affected by the presence of its soluble salt?

2. Calculate the pH of a solution which is $0.53 \text{ M HC}_6\text{H}_4\text{NO}_2$ and $0.50 \text{ M NaC}_6\text{H}_4\text{NO}_2$.

3. Calculate the pH of a solution which is 0.245 M NH₃ and 0.245 M NH₄NO₃.