CONCENTRATIONS

Name

Section

- 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid, or (aq)ueous.
 - a. $Na_3PO_4(aq) + Pb(NO_3)_2(aq) \rightarrow$
 - b. $Mg(OH)_2(aq) + HClO_4(aq) \rightarrow$
 - c. $HC_2H_3O_2(aq) + NaOH(aq) \rightarrow$
 - d. $H_2SO_4(aq) + NH_3(aq) \rightarrow$
- 2. Write the ionic and net ionic chemical equations for 1a and 1b.

Ionic equation:

Net ionic equation:

Ionic equation:

Net ionic equation:

3.

- a. Which container has the highest concentration? _
- b. Which container has the lowest concentration?
- c. If you pour ¹/₂ of A out the concentration will... double? halve? stay the same? Not enough info?
- d. The contents of container A are distributed in the following way into two new empty containers: 50 mL in one container and 150 mL in the other. Draw a picture of the two containers.
- e. If you double the amount of water in E the concentration will be the same as container _____.

- 4. a. How many grams of magnesium sulfate are required to prepare 250.0 mL of 0.0250 M MgSO₄?
 - b. Describe how you would prepare this solution.
- 5. Calculate the molarity of a solution prepared by mixing 9.98 g of NaCl in enough water to make 200.0 mL of solution.
- 6. What is the concentration of sulfate in a 50.0 mL sample of sodium sulfate if 6.55 mL of 0.0100 M BaCl, is needed to react with all of the sulfate ion?

lon	Solubility	Exceptions
NO ₃ ⁻	soluble	none
CIO ₄ ⁻	soluble	none
Cl-	soluble	except Ag ⁺ , Hg ₂ ²⁺ , Pb ^{2+*}
I-	soluble	except Ag^+ , Hg_2^{2+} , Pb^{2+}
SO ₄ ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO ₃ ²⁻	insoluble	except Group IA and NH_4^{+}
PO ₄ ³⁻	insoluble	except Group IA and NH_4^{+}
OH-	insoluble	except Group IA, Ca ²⁺ *, Ba ²⁺ , Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and $\mathrm{NH_4^+}$
Na ⁺	soluble	none
NH ₄ ⁺	soluble	none
K ⁺	soluble	none

Solubility Table

*slightly soluble