Concentration

Name \qquad Section \qquad

DCI13.1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous.
a) $\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathbf{P b}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\mathbf{6 N a N O} \mathbf{N}_{3}(a q)$
b) $\quad \mathrm{Mg}(\mathrm{OH})_{2}(a q)+2 \mathrm{HClO}_{4}(a q) \rightarrow \mathbf{M g}\left(\mathbf{C l O}_{4}\right)_{2}(a q)+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(l)$
c) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathbf{N a C}_{2} \mathbf{H}_{3} \mathrm{O}_{\mathbf{2}}(a q)+\mathbf{H}_{\mathbf{2}} \mathbf{O}(l)$
d) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NH}_{3}(a q) \rightarrow\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4}(a q)$

DCI13.2. Write the ionic and net ionic chemical equations for DCI13.2a) and DCI13.2b).
Ionic equation:
$6 \mathrm{Na}^{+}(a q)+2 \mathrm{PO}_{4}{ }^{3-}(a q)+3 \mathrm{~Pb}^{2+}(a q)+6 \mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{Na}^{+}(a q)+6 \mathrm{NO}_{3}^{-}(a q)$
Net Ionic equation:

$$
2 \mathrm{PO}_{4}{ }^{3-}(a q)+3 \mathrm{~Pb}^{2+}(a q) \rightarrow \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)
$$

Ionic equation:

$$
\begin{aligned}
& \mathbf{M g}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)+2 \mathrm{ClO}_{4}^{-(a q)}+2 \mathbf{H}^{+}(a q) \rightarrow \mathbf{M g}\left(\mathrm{ClO}_{4}\right)_{2}(a q)+\mathbf{2 H}_{2} \mathbf{O}(l) \\
& \quad \text { Net Ionic equation: }
\end{aligned}
$$

$$
\mathrm{OH}^{-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

DCI13.3

a) Which container has the highest concentration? E
b) Which container has the lowest concentration? A
c) If you pour $1 / 2$ of A out the concentration will... double? halve? Stay the same? Not enough info
d) If the contents of container A are distributed in the following way into two new empty containers: 50 mL in one container and 150 mLs in the other. Draw a picture of the two containers.

e) If you double the amount of water in E the concentration will be the same as container \mathbf{C}.

DCI13.3a. How many grams of magnesium sulfate are required to prepare 250.0 mLs of 0.0250 M MgSO_{4} ?
$.250 \mathrm{~L}\left(\frac{0.025 \mathrm{~mol} \mathrm{MgSO}_{4}}{1 \mathrm{~L}}\right)=0.00625 \mathrm{~mol} \mathrm{MgSO}_{4}$
$0.00625 \mathrm{~mol} \mathrm{MgSO}_{4}\left(\frac{120.3 \mathrm{~g} \mathrm{MgSO}_{4}}{1 \mathrm{~mol} \mathrm{MgSO}_{4}}\right)=0.752 \mathrm{~g} \mathrm{MgSO}_{4}$
b) Describe how you would prepare this solution?

Weigh 0.752 g MgSO $_{4(\mathrm{~s})}$ using a balance. Add the $\mathrm{MgSO}_{4(\mathrm{~s})}$ to a 250 mL volumetric flask. Add some water, about 200 mL and mix the solution until all the $\mathbf{M g S O}_{4}$ dissolves. Then add enough water so the final volume is $\mathbf{2 5 0} \mathbf{~ m L}$.

DCI13.4. Calculate the molarity of a solution prepared by mixing 9.98 g of NaCl in enough water to make 200.0 mLs of solution.
9.98 g of NaCl $\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{\mathbf{5 8 . 4 5} \mathrm{g} \mathrm{NaCl}}\right)=0.171 \mathrm{~mol} \mathrm{NaCl}$
$\frac{0.171 \mathrm{~mol} \mathrm{NaCl}}{0.200 \mathrm{~L}}=0.854 \mathrm{M}$
DCI13.5. What is the concentration of sulfate in a 50.0 mL sample of sodium sulfate if 6.55 mL of $0.0100 \mathrm{M} \mathrm{BaCl}_{2}$ is needed to react with all of the sulfate ion.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathrm{BaCl}_{2}(a q) \rightarrow \mathrm{BaSO}_{4}(s)+2 \mathrm{NaCl}(a q)
$$

Initial
Change
Final
We must complete the ICE table. We are given a volume and concentration of BaCl_{2} from which we can determine moles.
$0.0655 \mathrm{~L} \mathrm{BaCl}_{2}\left(\frac{0.0100 \mathrm{~mol} \mathrm{BaCl}_{\mathbf{2}}}{1 \mathrm{~L}}\right)=6.55 \times 10^{-4} \mathrm{~mol} \mathrm{BaCl}_{\mathbf{2}}$
We can add this amount to the ICE table, as the amount of that reacts (the Change row),

$$
\begin{aligned}
& \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathrm{BaCl}_{2}(a q) \rightarrow \mathrm{BaSO}_{4}(s) \quad+\quad 2 \mathrm{NaCl}(a q) \\
& \text { Initial } \\
& \text { Change } \\
& -6.55 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

Final
Now we can use the coefficients in the balanced equation to determine the ratio of the reactants and products in the Change row.

$$
\begin{aligned}
& 6.55 \times 10^{-4} \mathrm{~mol} \mathrm{BaCl}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}\right)=6.55 \times 10^{-4} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \\
& 6.55 \times 10^{-4} \mathrm{~mol} \mathrm{BaCl}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}\right)=6.55 \times 10^{-4} \mathrm{~mol} \mathrm{BaSO}_{4} \\
& 6.55 \times 10^{-4} \mathrm{~mol} \mathrm{BaCl}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{NaCl}_{1 ~ \mathrm{~mol} \mathrm{BaCl}_{2}}}{10}\right)=1.31 \times 10^{-3} \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\mathbf{B a C l}_{2}(a q) \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{NaCl}_{(a q)}
$$

Initial
Change $-6.55 \times 10^{-4} \mathrm{~mol}-6.55 \times 10^{-4} \mathrm{~mol} \quad 6.55 \times 10^{-4} \mathrm{~mol} \quad 1.31 \times 10^{-3} \mathrm{~mol} \mathrm{NaCl}$
Final

Since $6.55 \times 10^{-4} \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ must react the concentration of sulfate is determined knowing the moles of sulfate and the volume of its solution,

$$
\begin{aligned}
& 6.55 \times 10^{-4} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}\left(\frac{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right)=6.55 \times 10^{-4} \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-} \\
& \left(\frac{6.55 \times 10^{-4} \mathrm{SO}_{4}{ }^{2-}}{0.050 \mathrm{~L}}\right)=0.0131 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}
\end{aligned}
$$

NOTE: This is the same concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Solubility Table

Ion	Solubility	Exceptions
$\mathrm{NO}_{3}{ }^{-}$	soluble	none
ClO_{4}^{-}	soluble	none
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+},{ }^{*} \mathrm{~Pb}^{2+}$
I^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
$\mathrm{CO}_{3}{ }^{2-}$	insoluble	$\text { except Group IA and } \mathrm{NH}_{4}{ }^{+}$
$\mathrm{PO}_{4}{ }^{3-}$	insoluble	except Group IA and NH_{4}
$\begin{aligned} & -\mathrm{OH} \\ & \mathrm{~S}^{2-} \end{aligned}$	insoluble insoluble	except Group IA, ${ }^{*} \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$ except Group IA, IIA and $\mathrm{NH}_{4}{ }^{+}$
Na^{+}	soluble	none
NH_{4}^{+}	soluble	none
K^{+}	soluble	none \quad *slightly soluble

