FREE ENERGY AND THE EQUILIBRIUM CONSTANT

Name

Section

1. The free energy drives a chemical reaction toward equilibrium. For the chemical reaction under standard conditions:

 $\begin{array}{ccc} A &+ & B \rightleftharpoons C &+ & D \\ 1 & M & 1 & M & 1 & M \end{array} \quad Q_c = [C] [D] / [A] [B] \end{array}$

there are three possible values for free energy:

 $\Delta G^{\circ} < 0$ $\Delta G^{\circ} > 0$ $\Delta G^{\circ} = 0$

For each value, indicate the direction the driving force will push the reaction (right, left) and the range of values for the equilibrium constant (>1, <1, =1).

2. Values for ΔG° and K were obtained for four reactions:

K	$\Delta \mathbf{G}^{\circ}$
1.4×10^{-3}	16,270 J/mol
$6.3 imes 10^{-5}$	23,950 J/mol
2.5×10^{-9}	49,050 J/mol
$2.4 imes 10^{-12}$	66,260 J/mol

Plot these values in Excel and obtain the curve fitting equation (Hint: the proportionality constant consists of the temperature [in K] and R [in J/mol K]).

- 3. Determine ΔG° for the reaction, $N_2O_4(g) \rightarrow 2NO_2(g)$.
 - a. Calculate K for the reaction at 25 °C.

b. Calculate ΔG for the reaction if the partial pressure of NO_2 is 0.1 atm and the partial pressure of N_2O_4 is 1 atm. ($\Delta G = \Delta G^\circ + RT \ln Q$)