Gas Laws II

Name \qquad Lab Section \# \qquad

1. Distinguish between the gas, liquid and solid phase by listing the unique properties of each that are not shared by the others.

Gas:
Gases are fluids with no definite shape and no definite volume. Gases can expand and contract to fill a container. Gases have very low densities.

Liquid:
Liquids are fluids which have a definite volume. Like gases, liquids have no definite shape. However, liquids will only fill the volume of a container to an extent to which it equals its own volume. Liquids are only slightly compressible.

Solid:
Solids have a definite shape and a definite volume. Solids are not compressible. Solids are not fluids and, unless they are divided into very small particles, will not flow with the characteristics of a liquid or dense gas.
2. When an aerosol can is full at $25^{\circ} \mathrm{C}$, the internal pressure is 2.50 atm . What is the new internal pressure at $1000^{\circ} \mathrm{C}$?

$\frac{P_{1}}{T_{1}}=\frac{n_{1} R}{V_{1}}$ and $\frac{n_{2} R}{V_{2}}=\frac{P_{2}}{T_{2}}$
$\frac{n_{1} R}{V_{1}}=\frac{n_{2} R}{V_{2}}$ is a constant, therefore, $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

$$
\frac{2.50 \mathrm{~atm}}{298 \mathrm{~K}}(1273 \mathrm{~K})=\mathrm{P}_{2}=10.7 \mathrm{~atm}
$$

3. If 1.00 moles of an ideal gas at 1.00 atm and $273 \mathrm{~K}(\mathrm{STP})$ occupies a volume of 22.4 L , calculate the value and determine the units for R .

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{R} & =\frac{\mathrm{PV}}{\mathrm{nT}} \\
\mathrm{n}=1.00 \mathrm{~mol}: \mathrm{T}=273 \mathrm{~K}: \mathrm{V} & =22.4 \mathrm{~L}: \mathrm{P} 1.00 \mathrm{~atm}
\end{aligned}
$$

Substituting;

$$
\begin{aligned}
& R=\frac{1.00 \mathrm{~atm} \cdot 22.4 \mathrm{~L}}{1.00 \mathrm{~mol} \cdot 273 \mathrm{~K}} \\
& R=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

4. What pressure is required to confine 0.460 mol of an ideal gas at $33.0^{\circ} \mathrm{C}$ in a volume of 9.50 L ?

Using the equation $P V=n R T$, assign the known and unknown variables. Typically, for single value problems this is easy. In this case;

$$
\begin{aligned}
& P=\frac{n R T}{V} \\
& n=0.460 \text { mol: } T=33+273=306 \mathrm{~K}: V=9.50 \mathrm{~L}: P \text { is unknown. }
\end{aligned}
$$

Substituting;

$$
\begin{aligned}
& P(9.50 \mathrm{~L})=0.460 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(306 \mathrm{~K}) \\
& P=\frac{0.460 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(306 \mathrm{~K})}{9.50 \mathrm{~L}}=1.22 \mathrm{~atm}
\end{aligned}
$$

5. What is the volume of a bulb that contains 3.56 g of nitrogen gas at $25.0^{\circ} \mathrm{C}$ and 3.50 atm ?

Using the equation $\mathrm{PV}=\mathrm{nRT}$, assign the known and unknown variables. Typically, for single value problems this is easy. In this case;

$$
\mathbf{V}=\frac{\mathbf{n R T}}{\mathbf{P}}
$$

T $=25+273=298 \mathrm{~K}: V=$ is unknown: $P=3.50 \mathrm{~atm}: \mathrm{n}=$ must be calculated.

$$
\begin{aligned}
& \mathrm{n}=3.56 \mathrm{~g} \mathrm{~N} 2\left(\frac{1 \mathrm{~mol}}{28.0 \mathrm{~g}}\right)=0.127 \mathrm{~mol} \mathrm{~N}_{2} \\
& (3.50 \mathrm{~atm}) \mathrm{V}=0.127 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K}) \\
& \mathrm{V}=\frac{0.127 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{3.50 \mathrm{~atm}}=0.888 \mathrm{~L}
\end{aligned}
$$

6. Calculate the density of oxygen gas at 1.00 atmosphere and $0.00^{\circ} \mathrm{C}$.

To solve this problem, we must begin with the ideal gas equation again and assign the known and unknown variables.
$T=0^{\circ} \mathrm{C}+273=273: \mathbf{P}=1 \mathrm{~atm}: \mathrm{V}$ is unknown: \boldsymbol{n} is unknown
It appears this problem cannot be solved as we have solved the others. By manipulating the ideal gas equation it is possible to find an answer.

$$
\begin{aligned}
& \mathbf{P V}=\mathbf{n R T} \quad \mathrm{n}=\frac{\text { mass }(\mathbf{m})}{\mathrm{MW}(\mathrm{molar} \text { mass })} \\
& \mathbf{P V}=\frac{\mathbf{m}}{\mathbf{M W}} \mathbf{R T} \\
& \mathbf{P}(\mathbf{M W})=\frac{\mathbf{m R T}}{\mathrm{V}} \\
& \mathbf{P}(\mathbf{M W})=\frac{m}{\mathbf{V}} \cdot \mathbf{R T} \quad \text { recall density }=\frac{\mathbf{m}}{\mathbf{V}} \\
& \mathbf{P}(\mathbf{M W})=\operatorname{density} \cdot \mathbf{R T} \\
& \text { density }=\frac{\mathbf{P}(\mathbf{M W})}{\mathbf{R T}}
\end{aligned}
$$

Now we can solve for the density of the gas.

$$
\text { density }=\frac{1 \mathrm{~atm}\left(32.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{0.0821 \frac{\mathrm{~L} \cdot \operatorname{atm}}{\mathrm{~mol} \cdot \mathrm{~K}}(273 \mathrm{~K})}=1.43 \frac{\mathrm{~g}}{\mathrm{~L}}
$$

This form of the ideal gas law is very useful for determining the molar mass of a gas, knowing the volume of a given amount (in grams) of gas at a particular pressure and temperature.

