Gas Laws III

Name \qquad Lab Section \#

1. Calculate the volume of a sample of helium at $-33.0^{\circ} \mathrm{C}$ and 1.23 atm if it occupies a volume of 2.34 L at $54.5^{\circ} \mathrm{C}$ and 1026 mmHg .

$$
\begin{aligned}
& \frac{\mathbf{P}_{1} V_{1}}{T_{1}}=\frac{\mathbf{P}_{2} V_{2}}{T_{2}} \\
& V_{2}=\frac{T_{2}}{\mathbf{P}_{2}}\left(\frac{\mathbf{P}_{1} V_{1}}{T_{1}}\right)=\frac{240 \mathrm{~K}}{1.23 \mathrm{~atm}}\left(\frac{1.35 \mathrm{~atm} \cdot 2.34 \mathrm{~L}}{327.5 \mathrm{~K}}\right)=1.88 \mathrm{~L}
\end{aligned}
$$

2. A 0.751 mol sample of an ideal gas occupies a 10.0 liter flask at $27.0^{\circ} \mathrm{C}$ and 1.85 atm . If 0.257 mol of the gas are removed from the container, calculate the new pressure. (Assume the temperature remains constant.)
$\mathbf{P V}=n \mathrm{RT}$
$P=\frac{n R T}{V}$
$P=\frac{0.494 \mathrm{~mol}\left(0.0821 \frac{\mathrm{Latm}}{\mathrm{mol} \cdot \mathrm{K}}\right)(300 \mathrm{~K})}{10.0 \mathrm{~L}}=1.22 \mathrm{~atm}$
3. What is the volume of a bulb that contains 3.56 g of nitrogen gas at $25.0^{\circ} \mathrm{C}$ and 3.50 atm ?

Using the equation $P V=n R T$, assign the known and unknown variables. Typically, for single value problems this is easy. In this case;

$$
\mathbf{V}=\frac{\mathbf{n R T}}{\mathbf{P}}
$$

$\mathrm{T}=25+273=298 \mathrm{~K}: \mathrm{V}=$ is unknown: $\mathrm{P}=3.50 \mathrm{~atm}: \mathbf{n}=$ must be calculated.

$$
\begin{aligned}
& \mathrm{n}=3.56 \mathrm{~g} \mathrm{~N} 2\left(\frac{1 \mathrm{~mol}}{28.0 \mathrm{~g}}\right)=0.127 \mathrm{~mol} \mathrm{~N} 2 \\
& (3.50 \mathrm{~atm}) \mathrm{V}=0.127 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K}) \\
& \mathrm{V}=\frac{0.127 \mathrm{~mol}\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{3.50 \mathrm{~atm}}=0.888 \mathrm{~L}
\end{aligned}
$$

4. Calculate the density of SF_{6} at 1.00 atm and $0.00{ }^{\circ} \mathrm{C}$.
density $=\frac{\mathbf{P}(\mathbf{M W})}{\text { RT }}$

$$
\text { density }=\frac{1 \mathrm{~atm}\left(146 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{0.0821 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}(273 \mathrm{~K})}=6.51 \frac{\mathrm{~g}}{\mathrm{~L}}
$$

5. Consider the reaction

$$
2 \mathrm{NaOH}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

which is a chemical means, although not economically viable, of removing CO_{2} from the atmosphere. How many liters of CO_{2} at $25.0^{\circ} \mathrm{C}$ and 745 mmHg can be removed by 1.00 kg of NaOH ?
$1000 \mathrm{~g} \mathrm{NaOH}\left(\frac{1 \mathrm{~mole}}{40 \mathrm{gm}}\right)=25.0 \mathrm{~mole} \mathrm{NaOH}$
$25.0 \mathbf{m o l ~ N a O H}\left(\frac{1 \text { mole } \mathrm{CO}_{2}}{2 \text { mole } \mathrm{NaOH}}\right)=\mathbf{1 2 . 5}$ mole CO_{2}
$\mathrm{V}=\frac{\mathrm{nCO}_{2} \mathrm{RT}}{\mathrm{P}}=\frac{12.5 \mathrm{moles} .0821\left(\frac{\mathrm{l} \cdot \mathrm{atm}}{\mathrm{mol} \cdot \mathrm{K}}\right)(298 \mathrm{k})}{.980 \mathrm{~atm}}$
$=312$ liters
6. Calculate the total pressure in a 10.0 liter flask at $21^{\circ} \mathrm{C}$ which contains 4.00 $\mathrm{g} \mathrm{H}_{2}, 12.0 \mathrm{~g} \mathrm{O}_{2}$ and 8.00 g He .
$4.00 \mathrm{~g} \mathrm{H}_{2}\left(\frac{1 \mathrm{~mol}}{2.02 \mathrm{~g}}\right)=1.98 \mathrm{~mol} \mathrm{H} \mathbf{2}$
$12.00 \mathrm{~g} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol}}{\mathbf{3 2 . 0 g}}\right)=0.375 \mathrm{~mol} \mathrm{O}_{2}$
$8.00 \mathrm{~g} \mathrm{He}\left(\frac{1 \mathrm{~mol}}{4.0 \mathrm{~g}}\right)=2.00 \mathrm{~mol} \mathrm{He}$

$$
\begin{aligned}
\mathbf{P}_{T} & =\mathbf{P}_{\mathbf{H}_{2}}+\mathbf{P}_{\mathrm{O}_{2}}+\mathbf{P}_{\mathbf{H e}}=\frac{\mathbf{n}_{\mathbf{H}_{2}} \mathbf{R T}}{V}+\frac{\mathbf{n}_{\mathbf{O}_{2}} \mathbf{R T}}{V}+\frac{\mathbf{n}_{\mathbf{H e}} R T}{V} \\
& =\left(\mathbf{n}_{\mathbf{H}_{2}}+\mathbf{n}_{\mathbf{O}_{2}}+\mathbf{n}_{\mathbf{H e}}\right)\left(\frac{\mathbf{R T}}{V}\right)
\end{aligned}
$$

$P_{T}=(1.98 \mathrm{~mol} \mathrm{H}+0.375 \mathrm{~mol} \mathrm{O} 2+2.00 \mathrm{~mol} \mathrm{He})\left(\frac{0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 294 \mathrm{~K}}{10.0 \mathrm{~L}}\right)$
$\mathrm{P}_{\mathrm{T}}=10.5 \mathrm{~atm}$
7. A common laboratory preparation of O_{2} involved the decomposition of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, according to the equation,

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2(g)}
$$

If 240 mL of O_{2} at $23^{\circ} \mathrm{C}$ and at 0.965 atm pressure are collected over a sample of water at the same temperature determine the number of moles of O_{2} obtained in the reaction.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{O}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}} \quad \text { at } 23{ }^{\circ} \mathrm{C} \text { the } \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}} \text { is } 21.0 \mathrm{mmHg} \\
& \mathrm{P}_{\mathrm{O}_{2}}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=733 \mathrm{mmHg}-21.0 \mathrm{mmHg}=712 \mathrm{mmHg}(.937 \mathrm{~atm}) \\
& \mathrm{n}_{\mathrm{O}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{0.937 \mathrm{~atm} \cdot 0.240 \mathrm{~L}}{0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 296 \mathrm{~K}}=9.25 \times 10^{-3} \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

