During Class Invention

Integrated Rate Law Part I

1. The reaction:

 $A(g) \rightarrow products$ 

follows simple first order kinetics. When the initial concentration of A is 0.500 M the initial rate of the reaction is determined to be  $4.20 \times 10^{-3} \text{ M s}^{-1}$ . If the initial concentration of A is tripled, what would be the new initial rate of the reaction?

The rate law for the reaction that follows first order kinetics is Rate =  $k[A]^1$ 

If [A] is equal to 3[A] then substitute into the rate law,

The initial rate will triple.

Rate = 
$$3 \cdot 4.20 \ge 10^{-3} \text{ M s}^{-1} = 1.26 \ge 10^{-2} \text{ M s}^{-1}$$

2. Write the integrated rate law for a reaction that follows simple first order kinetics.

$$\ln\left(\frac{[\mathbf{A}]}{[\mathbf{A}]_0}\right) = -\mathbf{k}t$$

3. The decomposition of  $H_2O_2$  to  $H_2O$  and  $O_2$  follows first order kinetics with a rate constant of 0.0410 min<sup>-1</sup> at a particular temperature.

$$H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

Calculate the  $[H_2O_2]$  after 10 mins if  $[H_2O_2]_0$  is 0.200 M.

$$\ln \frac{[H_2O_2]}{[H_2O_2]_0} = -kt$$

$$\ln \frac{[H_2O_2]}{0.200 \text{ M}} = -(0.0410 \text{ min}^{-1})(10 \text{ mins})$$

$$\ln \frac{[H_2O_2]}{0.200 \text{ M}} = -0.410$$

$$e \left( \ln \frac{[H_2O_2]}{0.200 \text{ M}} \right) = e^{-0.410}$$

$$\frac{[H_2O_2]}{0.200 \text{ M}} = 0.6637$$

$$[H_2O_2] = 0.6637 \cdot (0.200 \text{ M})$$

$$[H_2O_2] = 0.133 \text{ M}$$

Name\_\_\_\_\_

TA Name \_\_\_\_\_

Lab Section #\_\_\_\_\_

4. The decomposition of  $N_2O_5$  to  $O_2$  and  $NO_2$  follows first order kinetics. If a sample at 25 °C with the initial concentration of  $N_2O_5$  of 1.25 x 10<sup>-3</sup> M falls to 1.02 x 10<sup>-3</sup> M in 100. minutes, calculate the rate constant for the reaction.

$$\ln \frac{[N_2O_5]}{[N_2O_5]_0} = -kt$$
  

$$\ln \frac{[1.02 \times 10^{-3} M]}{[1.25 \times 10^{-3} M]_0} = -k(100 \text{ min})$$
  

$$\ln 0.816 = -k(100 \text{ min})$$
  

$$-0.203 = -k(100 \text{ min})$$
  

$$\frac{-0.203}{100 \text{ min}} = -k$$
  

$$2.03 \times 10^{-3} \text{ min}^{-1} = k$$

5. Show how a plot of *ln*[concentration] versus time can provide the rate constant for a reaction which follows simple first order kinetics.



6. Using the following data, establish that the decomposition  $N_2O_5$  according to the reaction,

 $2N_2O_5(g) \rightarrow 2NO_2(g) + O_2(g)$ 

follows first order kinetics. Determine the rate constant for the reaction.

| Time (sec) | $[N_2O_5](M)$           | ln[NO <sub>2</sub> ] |
|------------|-------------------------|----------------------|
| 0          | 1.50 x 10 <sup>-3</sup> | -6.50                |
| 2000       | 1.40 x 10 <sup>-3</sup> | -6.57                |
| 5000       | 1.27 x 10 <sup>-3</sup> | -6.67                |
| 7000       | 1.18 x 10 <sup>-3</sup> | -6.74                |
| 11000      | 1.03 x 10 <sup>-3</sup> | -6.88                |
| 15000      | 9.00 x 10 <sup>-4</sup> | -7.01                |

