\qquad
\qquad
Lab Section \# \qquad

1. The reaction:

$$
\mathrm{A}(\mathrm{~g}) \rightarrow \text { products }
$$

follows simple first order kinetics. When the initial concentration of A is 0.500 M the initial rate of the reaction is determined to be $4.20 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$. If the initial concentration of A is tripled, what would be the new initial rate of the reaction?

The rate law for the reaction that follows first order kinetics is

$$
\text { Rate }=k[A]^{1}
$$

If $[A]$ is equal to $3[A]$ then substitute into the rate law,

$$
\text { Rate }=k[3[\mathrm{~A}]]^{1}
$$

The initial rate will triple.

$$
\text { Rate }=3 \cdot 4.20 \times 10^{-3} \mathrm{M} \mathrm{~s}^{-1}=1.26 \times 10^{-2} \mathrm{M} \mathrm{~s}^{-1}
$$

2. Write the integrated rate law for a reaction that follows simple first order kinetics.

$$
\ln \left(\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}\right)=-k t
$$

3. The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{H}_{2} \mathrm{O}$ and O_{2} follows first order kinetics with a rate constant of $0.0410 \mathrm{~min}^{-1}$ at a particular temperature.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)
$$

Calculate the $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ after 10 mins if $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}$ is 0.200 M .

$$
\begin{aligned}
& \ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}}=-\mathrm{kt} \\
& \ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{0.200 \mathrm{M}}=-\left(0.0410 \mathrm{~min}^{-1}\right)(10 \mathrm{mins}) \\
& \ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{0.200 \mathrm{M}}=-\mathbf{0 . 4 1 0} \\
& \mathrm{e}\left(\ln \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{0.200 \mathrm{M}}\right)=\mathrm{e}^{-\mathbf{0} .410} \\
& \frac{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{0.200 \mathrm{M}}=\mathbf{0 . 6 6 3 7} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.6637 \cdot(0.200 \mathrm{M})} \\
& {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=\mathbf{0 . 1 3 3} \mathrm{M}}
\end{aligned}
$$

4. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to O_{2} and NO_{2} follows first order kinetics. If a sample at $25^{\circ} \mathrm{C}$ with the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ of $1.25 \times 10^{-3} \mathrm{M}$ falls to $1.02 \times 10^{-3} \mathrm{M}$ in 100 . minutes, calculate the rate constant for the reaction.

$$
\begin{aligned}
& \ln \frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}=-\mathrm{kt} \\
& \ln \frac{\left[1.02 \times 10^{-3} \mathrm{M}\right]}{\left[1.25 \times 10^{-3} \mathrm{M}\right]_{0}}=-k(100 \mathrm{~min}) \\
& \ln 0.816=-k(100 \mathrm{~min}) \\
& -0.203=-k(100 \mathrm{~min}) \\
& \frac{-0.203}{100 \mathrm{~min}}=-k \\
& \quad 2.03 \times 10^{-3} \min ^{-1}=k
\end{aligned}
$$

5. Show how a plot of $\ln [$ concentration] versus time can provide the rate constant for a reaction which follows simple first order kinetics.
$\ln \left(\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}\right)=-\mathrm{kt}$
$\ln [A]-\ln [A]_{0}=-k t$
$\ln [A]=-k t+\ln [A]_{0}$
this equation fits the general equation
for a line, $y=m x+b$, where

$$
y=\ln [\mathrm{A}]: \mathrm{m}=-\mathrm{k}: x=\mathrm{t}
$$

6. Using the following data, establish that the decomposition $\mathrm{N}_{2} \mathrm{O}_{5}$ according to the reaction,

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

follows first order kinetics. Determine the rate constant for the reaction.

Time (sec)	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$	$\ln \left[\mathrm{NO}_{2}\right]$
0	1.50×10^{-3}	$\mathbf{- 6 . 5 0}$
2000	1.40×10^{-3}	$\mathbf{- 6 . 5 7}$
5000	1.27×10^{-3}	$\mathbf{- 6 . 6 7}$
7000	1.18×10^{-3}	$\mathbf{- 6 . 7 4}$
11000	1.03×10^{-3}	$\mathbf{- 6 . 8 8}$
15000	9.00×10^{-4}	$\mathbf{- 7 . 0 1}$

