Chem 1515
During Class Invention
Spring 2007

Name
TA Name \qquad
Lab Section \# \qquad

1. List four factors which affect the rate of a chemical reaction. For each provide a brief statement describing how it affects the speed of a chemical reaction. See Appendix III for recommended demonstration, video, or computer resources.

The four factors are;
Temperature - the rate of a reaction increases with increasing temperature. (demonstration of alka-seltzer tablet dropped into ice water, room temperature water, and hot water.)

Concentration - the rate of a reaction increases with increasing concentration of reactants (pressure changes behave in the same way as concentration) (demonstration of the addition of zinc to 1 M HCl and 6 M HCl)

Catalyst - the rate of a reaction increases with addition of a catalyst. (demonstration of the addition of KI to a sample of $\mathbf{H}_{2} \mathrm{O}_{2}$)

Surface area - the rate of a reaction increases with increased surface area of the reactant. (demonstration of burning lycopodium powder)
2. Define the term chemical kinetics.

Chemical kinetics is the study of;

1. the rate at which reactants are converted to products during the course of a chemical reaction.
2. The factors, which include temperature, pressure, concentration, catalyst and surface area that effect the rate of a chemical reaction.
3. The sequence of steps, or the mechanism, which we believe occurs when reactants are converted to products.
4. Define the term reaction rate.

For a chemical reaction its rate, or rate of reaction, is expressed in terms of how fast the concentration of a substance changes in the course of a chemical reaction.

$$
\begin{aligned}
& \text { rate of reaction }=\frac{\Delta[\text { product }]}{\text { time }}, \text { or } \\
& \text { rate of reaction }=-\frac{\Delta[\text { reactant }]}{\text { time }}
\end{aligned}
$$

For the following chemical reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

write the rate equation in terms of the change in concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ with time, $\Delta\left[\mathrm{NO}_{2}\right]$ with time and $\Delta\left[\mathrm{O}_{2}\right]$ with time.
rate $=-\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{1}{2} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=2 \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}$
4. Using the plot below, define the terms average rate, instantaneous rate and initial rate. See Appendix III for recommended demonstration, video, or computer resources.

Given a set of data which provides the concentration for a reactant which has been measured at different times and plotting this data the different rate can be determined as shown below.

