During Class Invention

Name(s) with Lab section in Group

Measurement

1) What is the length of the nail according to ruler A and ruler B?

Which one is more precise?

Ruler A is more precise. Because Ruler A is better able to resolve smaller differences in the length of an object.

How many significant figures are in this measurement?

For Ruler A the length is 4.39 - 4.40 so 3 significant figures. For Ruler B the length is 4.3 - 4.4 so only 2 significant figures.

2) What is amount of water in each of these cylinders? Which one is more precise?

Cylinder	Volume	Significant Figures
1	600	1
2	550	2
3	554	3
4	555.5	4

How many significant figures are in each of these measurements?

- 3. a) The diameter of the sun is 1,390,000 km. In scientific notation this is: _ 1.39 x 10⁶ km___
 - b) What is the surface area of the sun in km^2 and in mile²?

area = πr^2 = 3.1415 * (0.5 * 1.39 x 10⁶ km)² = 1.52 x 10¹² km²

$$1.52 \times 10^{12} \text{ km}^2 \left(\frac{1000 \text{ m}}{1 \text{ km}}\right)^2 \left(\frac{100 \text{ cm}}{1 \text{ m}}\right)^2 \ \left(\frac{1 \text{ inch}}{2.54 \text{ cm}}\right)^2 \left(\frac{1 \text{ foot}}{12 \text{ in}}\right)^2 \left(\frac{1 \text{ mile}}{5280 \text{ ft}}\right)^2 = 5.86 \times 10^{11} \text{ mile}^2$$

c) What is the volume of the sun in km³ and in mile³?

volume =
$$\frac{4}{3}\pi r^3$$
 = 1.333 * 3.1415 * (0.5 * 1.39 x 10⁶ km)³ = 1.41 x 10¹⁸ km³

$$1.41 \times 10^{18} \text{ km}^3 \left(\frac{1000 \text{ m}}{1 \text{ km}}\right)^3 \left(\frac{100 \text{ cm}}{1 \text{ m}}\right)^3 \left(\frac{1 \text{ inch}}{2.54 \text{ cm}}\right)^3 \left(\frac{1 \text{ foot}}{12 \text{ in}}\right)^3 \left(\frac{1 \text{ mile}}{5280 \text{ ft}}\right)^3 = 3.37 \times 10^{17} \text{ mile}^3$$

d) The mass of the sun is 1.989×10^{30} kg. What is the average density of the sun in:

i) kg/km³?
density =
$$\frac{1.989 \times 10^{30} \text{ kg}}{1.41 \times 10^{18} \text{ km}^3} = 1.41 \times 10^{12} \frac{\text{kg}}{\text{km}^3}$$

ii) g/cm^3 ?

density = 1.41 x 10¹²
$$\frac{\text{kg}}{\text{km}^3} \left(\frac{1000 \text{ g}}{1 \text{ kg}}\right) \left(\frac{1 \text{ km}}{1000 \text{ m}}\right)^3 \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3$$

1.41 x 10⁹ $\frac{\text{g}}{\text{cm}^3}$

4. Calculate the volume of a backpack in cm³, m³ and in³ whose dimensions are 22.86 cm x 38.0 cm x 76 cm.

volume = 22.86 cm x 38.0 cm x 76 cm = 6.6 x 10⁴ cm³

6.6 x 10⁴ cm³
$$\left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3$$
 = 6.6 x 10⁻² m³
6.6 x 10⁴ cm³ $\left(\frac{1 \text{ inch}}{2.54 \text{ cm}}\right)^3$ = 4.0 x 10³ in³