During Class Inventions Polyprotic Acids

Name_____

1. Refer to the data you obtained earlier (Acids, Bases and pH). Compare the pH and [H⁺] of H₂SO₄ with that of HCl and HNO₃. How do you account for any differences?

Solution	pН	Equilibrium [H+] or [OH-]
0.100 M HCl	1.00	$[H^+] = 1.00 \ge 10^{-1} M$
0.100 M HNO ₃	1.00	$[H^+] = 1.00 \ge 10^{-1} M$
0.100 M H ₂ SO ₄	0.88	[H ⁺] = 0.131 M

The difference in pH for the H₂SO₄ solution is due to the ability of H₂SO₄ to dissociate two protons.

2. H_2SO_4 is a polyprotic acid. What does this term mean? Write the dissociation equations which describe the stepwise behavior of H_2SO_4 .

$$H_2SO_4(aq) \rightleftharpoons H^+(aq) + HSO_4^-(aq)$$
$$HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{2-}(aq)$$

3. Carbonic acid, H₂CO₃, is a diprotic acid.

a) Write the two dissociation reactions showing the diprotic behavior.

1) $H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ 2) $HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$

b) If the initial concentration of H_2CO_3 is 0.100 M, calculate [H⁺]. In your calculation, assume only the first dissociation occurs. (Note: The equilibrium constant for the first dissociation, K_{a1} , is 4.3 x 10⁻⁷.)

	$H_2CO_3(aq) \implies$	$H^+(aq)$ +	HCO3 ⁻ (<i>aq</i>)	
initial	.1	1 x 10 ⁻⁷	0	
change	-X	+x	+x	$x = [H_2CO_3]_{diss}$
equilibrium	.1 - x	1 x 10 ⁻⁷ +x	0+x	

 $K_{a} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}$ 4.3 x 10⁻⁷ = $\frac{x^{2}}{.1 - x}$ assume x << .1 and 1 x 10⁻⁷ + x = x 4.3 x 10⁻⁸ = x² 2.07 x 10⁻⁴ = x = [H⁺]

c) Now consider the second dissociation equation for which $K_{a2} = 5.6 \times 10^{-11}$. What is the initial concentration of [HCO₃⁻]? What is the initial concentration of [H⁺]? Calculate the final [H⁺] assuming the second dissociation occurs.

 $[HCO_3^-]_0 = [H^+]_0 = 2.07 \text{ x } 10^{-4} \text{ M}$

 $HCO_3^{-}(aq) \implies H^+(aq) + CO_3^{2-}(aq)$ 2.07 x 10⁻⁴ 2.07 x 10⁻⁴ initial 0 change +x $x = [HCO_3^-]_{diss}$ -X +x $\begin{array}{ccc} -x & +x \\ 2.07 \text{ x } 10^{-4} \text{ - x} & 2.07 \text{ x } 10^{-4} \text{ + x} \end{array}$ equilibrium 0 + x $K_a = \frac{[H^+][CO_3^{2-}]}{[HCO_3^{-}]}$ $5.6 \ge 10^{-11} = \frac{(2.07 \ge 10^{-4} + \le)(x)}{2.07 \ge 10^{-4} - x}$ assume x << 2.07 x 10⁻⁴ 5.6 x 10⁻¹¹ = $\frac{(2.07 \text{ x } 10^{-4})(\text{x})}{2.07 \text{ x } 10^{-4}}$ 5.6 x 10^{-11} M = x = [H⁺] $[H^+]_{total} = [H^+]_{H_2CO_3 diss} + [H^+]_{HCO_3} - diss$ $[H^+]_{total} = 2.07 \text{ x } 10^{-4} \text{ M} + 5.6 \text{ x } 10^{-11} \text{ M}$ $[H^+]_{total} = 2.07 \text{ x } 10^{-4} \text{ M}$

Clearly, it is only the first dissociation which controls the pH of the solution.