$\qquad$

1. Refer to the data you obtained earlier (Acids, Bases and pH ). Compare the pH and $\left[\mathrm{H}^{+}\right]$of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with that of HCl and $\mathrm{HNO}_{3}$. How do you account for any differences?

| Solution | pH | Equilibrium $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$ |
| :--- | :---: | :--- |
| 0.100 M HCl | $\mathbf{1 . 0 0}$ | $\left[\mathbf{H}^{+}\right]=\mathbf{1 . 0 0} \times \mathbf{1 0}^{-\mathbf{1}} \mathbf{M}$ |
| $0.100 \mathrm{M} \mathrm{HNO}_{3}$ | $\mathbf{1 . 0 0}$ | $\left[\mathbf{H}^{+}\right]=\mathbf{1 . 0 0} \times \mathbf{1 0}^{\mathbf{- 1}} \mathbf{M}$ |
| $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ | $\mathbf{0 . 8 8}$ | $\left[\mathbf{H}^{+}\right]=\mathbf{0 . 1 3 1} \mathbf{M}$ |

The difference in $\mathbf{p H}$ for the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is due to the ability of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to dissociate two protons.
2. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a polyprotic acid. What does this term mean? Write the dissociation equations which describe the stepwise behavior of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\begin{aligned}
\mathbf{H}_{2} \mathrm{SO}_{4}(a q) & \rightleftharpoons \mathbf{H}^{+}(a q)+\mathbf{H S O}_{4^{-}}(a q) \\
\mathbf{H S O}_{4^{-}(a q)} & \rightleftharpoons \mathbf{H}^{+}(a q)+\mathbf{S O}_{4^{2-}(a q)}
\end{aligned}
$$

3. Carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, is a diprotic acid.
a) Write the two dissociation reactions showing the diprotic behavior.
1) 

$\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3^{-}}(a q)$
2)
$\mathrm{HCO}_{3}^{-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$
b) If the initial concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is 0.100 M , calculate $\left[\mathrm{H}^{+}\right.$]. In your calculation, assume only the first dissociation occurs. (Note: The equilibrium constant for the first dissociation, $\mathrm{K}_{\mathrm{a} 1}$, is $4.3 \times 10^{-7}$.)

|  | $\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons$ | $\mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}{ }^{-(a q)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| initial | . 1 | $1 \times 10^{-7}$ | 0 |  |
| change | -x | +x | +x | $\mathrm{x}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]_{\text {diss }}$ |
| equilibrium | . 1 - x | $1 \times 10^{-7}+\mathrm{x}$ | 0+x |  |
| $\mathrm{K}^{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]}$ |  |  |  |  |
| $\mathrm{K}_{\mathrm{a}}=\frac{}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$ |  |  |  |  |
| $4.3 \times 10^{-7}=\frac{1}{1}$ |  |  |  |  |

assume $\mathrm{x} \ll .1$ and $1 \times 10^{-7}+\mathrm{x}=\mathrm{x}$
$4.3 \times 10^{-8}=\mathrm{x}^{2}$
$2.07 \times 10^{-4}=\mathrm{x}=\left[\mathrm{H}^{+}\right]$
c) Now consider the second dissociation equation for which $\mathrm{K}_{\mathrm{a} 2}=5.6 \times 10^{-11}$. What is the initial concentration of $\left[\mathrm{HCO}_{3}{ }^{-}\right]$? What is the initial concentration of $\left[\mathrm{H}^{+}\right]$? Calculate the final $\left[\mathrm{H}^{+}\right]$assuming the second dissociation occurs.
$\left[\mathrm{HCO}_{3}^{-}\right]_{0}=\left[\mathrm{H}^{+}\right]_{0}=2.07 \times 10^{-4} \mathrm{M}$

|  | $\mathrm{HCO}_{3}{ }^{-(a q)} \rightleftharpoons$ |  |  |
| :---: | :---: | :---: | :---: |
| initial | $2.07 \times 10^{-4}$ | $\mathbf{H}^{+}(a q)$$2.07 \times 10^{-4}$${ }^{\text {a }}$ ( $\mathbf{C O}_{3}{ }^{\mathbf{2}-(a q)}$ |  |
| change | -x | +x | +x |
| equilibrium | $2.07 \times 10^{-4}-\mathrm{x}$ | $2.07 \times 10^{-4}+\mathrm{x}$ | $0+$ |
| $\underline{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}$ |  |  |  |
| $\mathrm{K}_{\mathrm{a}}=\frac{\left.\mathrm{HCO}_{3}{ }^{-}\right]}{}$ |  |  |  |
| $5.6 \times 10^{-11}=\left(2.07 \times 10^{-4}+\mathrm{x}\right)(\mathrm{x})$ |  |  |  |
| $5.6 \times 10^{-11}=\frac{2.07 \times 10^{-4}-\mathrm{x}}{}$ |  |  |  |
| assume $\mathrm{x} \ll 2.07 \times 10^{-4}$ |  |  |  |
| $5.6 \times 10^{-11}=\frac{\left(2.07 \times 10^{-4}\right)(x)}{2.07 \times 10^{-4}}$ |  |  |  |
|  |  |  |  |
| $5.6 \times 10^{-11} \mathrm{M}=\mathrm{x}=\left[\mathrm{H}^{+}\right]$ |  |  |  |
| $\left[\mathrm{H}^{+}\right]_{\text {total }}=\left[\mathrm{H}^{+}\right]_{\mathrm{H}_{2}} \mathrm{CO}_{3}$ diss $+\left[\mathrm{H}^{+}\right]_{\mathrm{HCO}_{3}{ }^{-} \text {diss }}$ |  |  |  |
| $\left[\mathrm{H}^{+}\right]_{\text {total }}=2.07 \times 10^{-4} \mathrm{M}+5.6 \times 10^{-11} \mathrm{M}$ |  |  |  |
| $\left[\mathrm{H}^{+}\right]_{\text {total }}=2.17$ | $\times 10^{-4} \mathrm{M}$ |  |  |

Clearly, it is only the first dissociation which controls the $\mathbf{p H}$ of the solution.

