Rates of Reaction

Name	
TA Name _	

Lab Section #

1a. Given the following data

	Exp. #1	Exp. #2
Time (min)	$[NO_2](M)$	$[NO_2](M)$
0	0.350	0.700
2	0.289	0.492
4	0.245	0.379
8	0.190	0.258
16	0.130	0.158
24	0.090	0.115
40	0.062	0.074

for the reaction

$$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$$

Plot the data for Exp. #1 and determine the average rate of the reaction between 8 and 24 min., the instantaneous rate of the reaction at 8 minutes and the initial rate of the reaction.

The initial rate can be obtained by determining the slope of the line

tangent to the point at t = 0. For this set of data, the initial rate will have a range of values around 0.037 $\frac{M}{min}$.

The instantaneous rate at 8 min = $0.010 \frac{M}{min}$.

The average rate between 8 and 24 min can be obtained as shown,

rate =
$$-\frac{(0.190 \text{ M} - 0.090 \text{ M})}{(8 \text{ min} - 24 \text{ min})} = 6.25 \text{ x } 10^{-3} \frac{\text{M}}{\text{min}}$$

b. Plot the data for Exp. #2 and determine the average rate of the reaction between 8 and 24 minutes, the instantaneous rate of the reaction at 8 minutes and the initial rate of the reaction.

The initial rate can be obtained determining the slope of the line tangent to the point at t=0. For this set of data the initial rate will have a range of values around $0.15\,\frac{M}{min}$.

The instantaneous rate at 8 min = $0.0204 \frac{M}{min}$.

The average rate between 8 and 24 min can be obtained as shown,

rate =
$$-\frac{(0.258 \text{ M} - 0.115 \text{ M})}{(8 \text{ min} - 24 \text{ min})} = 8.9 \text{ x } 10^{-3} \frac{\text{M}}{\text{min}}$$

c. By what factor did the initial concentration change in going from Exp #1 to Exp #2?

$$\frac{0.700 \text{ M}}{0.350 \text{ M}}$$
 = 2 The initial concentration increased by a factor of 2.

d. By what factor did the initial rate change in going from Exp #1 to Exp #2?

$$\frac{0.15 \frac{M}{min}}{0.037 \frac{M}{min}} = 4.1$$
 The initial rate increased by a factor of 4.

e. Write an equation which describes how the initial rate of the reaction depends on the initial concentration.

rate
$$\alpha [NO_2]^2$$
 therefore rate = $k[NO_2]^2$