During Class Invention
Rates of Reaction

Name \qquad
TA Name \qquad
Lab Section \# \qquad
1a. Given the following data

Time (min)	Exp. \#1 $\left[\mathrm{NO}_{2}\right](\mathrm{M})$	Exp. \#2 $\left[\mathrm{NO}_{2}\right](\mathrm{M})$
0	0.350	0.700
2	0.289	0.492
4	0.245	0.379
8	0.190	0.258
16	0.130	0.158
24	0.090	0.115
40	0.062	0.074

for the reaction

$$
2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)
$$

Plot the data for Exp. \#1 and determine the average rate of the reaction between 8 and 24 min ., the instantaneous rate of the reaction at 8 minutes and the initial rate of the reaction.

The initial rate can be obtained by determining the slope of the line
tangent to the point at $t=0$. For this set of data, the initial rate will have a range of values around $0.037 \frac{\mathrm{M}}{\mathrm{min}}$.
The instantaneous rate at $8 \mathrm{~min}=0.010 \frac{\mathrm{M}}{\mathrm{min}}$.
The average rate between 8 and 24 min can be obtained as shown,

$$
\text { rate }=-\frac{(0.190 \mathrm{M}-0.090 \mathrm{M})}{(8 \mathrm{~min}-24 \mathrm{~min})}=6.25 \times 10^{-3} \frac{\mathrm{M}}{\mathrm{~min}}
$$

b. Plot the data for Exp. \#2 and determine the average rate of the reaction between 8 and 24 minutes, the instantaneous rate of the reaction at 8 minutes and the initial rate of the reaction.

The initial rate can be obtained determining the slope of the line tangent to the point at $t=0$. For this set of data the initial rate will have a range of values around $0.15 \frac{\mathrm{M}}{\mathrm{min}}$.
The instantaneous rate at $8 \mathrm{~min}=0.0204 \frac{\mathrm{M}}{\mathrm{min}}$.
The average rate between 8 and 24 min can be obtained as shown,

$$
\text { rate }=\frac{(0.258 \mathrm{M}-0.115 \mathrm{M})}{(8 \mathrm{~min}-24 \mathrm{~min})}=8.9 \times 10^{-3} \frac{\mathrm{M}}{\mathrm{~min}}
$$

c. By what factor did the initial concentration change in going from Exp \#1 to Exp \#2?
$\frac{0.700 M}{0.350 M}=2 \quad$ The initial concentration increased by a factor of 2 .
d. By what factor did the initial rate change in going from Exp \#1 to Exp \#2?
$\frac{0.15 \frac{M}{\min }}{0.037 \frac{M}{\min }}=4.1 \quad$ The initial rate increased by a factor of 4.
e. Write an equation which describes how the initial rate of the reaction depends on the initial concentration.
rate $\alpha\left[\mathrm{NO}_{2}\right]^{2}$ therefore rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{\mathbf{2}}$

