\qquad

1. Define the term salt.

Salts are ionic compounds which are formed in a neutralization reaction between an acid and a base. Salts can be characterized from the type of acid and base which combine in the neutralization reaction. Salts can be formed from the reaction of a strong acid and a strong base, a strong acid and a weak base, a weak acid and a strong base or a weak acid and a weak base.
2. Complete the following table.

Solution	pH	Equilibrium $\left[\mathrm{H}^{+}\right]$or [OH^{-}]	Acidic, basic or neutral
0.100 M NaCl	7	$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$	neutral
$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	8.9	$\left[\mathrm{H}^{+}\right]=1.34 \times 10^{-9} \mathrm{M}$	basic
$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$	5.1	$\begin{gathered} {\left[\mathrm{OH}^{-}\right]=7.45 \times 10^{-6} \mathrm{M}} \\ {\left[\mathrm{H}^{+}\right]=7.45 \times 10^{-6} \mathrm{M}} \\ {\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-9} \mathrm{M}} \end{gathered}$	acidic

3. Predict the product of the neutralization reactions,

$$
\begin{aligned}
& \mathrm{HCl}_{(a q)}+\mathrm{NaOH}(a q) \rightarrow \\
& \mathbf{N a C l}_{(a q)}+\mathbf{H}_{\mathbf{2}} \mathbf{O}(l) \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{NaOH}_{(a q)} \rightarrow \mathbf{N a C}_{\mathbf{2}} \mathbf{H}_{\mathbf{3}} \mathbf{O}_{\mathbf{2}}(a q)+\mathbf{H}_{\mathbf{2}} \mathbf{O}(l) \\
& \mathrm{HCl}_{(a q)}+\mathrm{NH}_{3}(a q) \rightarrow \\
& \mathbf{N H}_{\mathbf{4}} \mathbf{C l}(a q)
\end{aligned}
$$

4. In general, what is the acid-base property of any salt formed in the reaction between a strong acid and a strong base?

NaCl is a neutral salt. In general, salts formed from the reaction between a strong acid and a strong base are neutral.
5. In general, what is the acid-base property of any salt formed in the reaction between a strong acid and a weak base?
$\mathbf{N H}_{4} \mathrm{Cl}$ is an acidic salt. In general, salts formed from the reaction between a strong acid and a weak base are acidic.
6. In general, what is the acid-base property of any salt formed in the reaction between a weak acid and a strong base?
$\mathrm{NaC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$ is an basic salt. In general, salts formed from the reaction between a weak acid and a strong base are basic.

7a. Write the dissociation equation which describes what happens when $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(s)$ is added to water.

$$
\begin{aligned}
& \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{NaOH}(a q) \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2^{-}}^{-(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{OH}^{-}(a q) \text { net ionic equation }}
\end{aligned}
$$

b. Write the equation which describes the acidic character of $\mathrm{Na}^{+}(a q)$. Write the equilibrium expression and estimate K_{a} for $\mathrm{Na}^{+}(a q)$.

$$
\mathbf{N a}^{+}(a q)+\mathbf{H}_{2} \mathbf{O}(l) \rightleftharpoons \mathbf{N a O H}(a q)+\mathbf{H}^{+}(a q)
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{NaOH}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{Na}^{+}\right]}=\frac{\mathbf{K}_{\mathbf{w}}}{\mathrm{K}_{\mathbf{b}}}=\frac{1 \times 10^{-14}}{\text { very large }}=\text { very small }
$$

c. Write the equation which describes the basic character of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(a q)$. Write the equilibrium expression and calculate the K_{b} for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)$.

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2^{-}}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right][\mathrm{OH}]}{\left[\mathrm{C}_{2} \mathbf{H}_{3} \mathrm{O}_{2}^{-}\right]}=\frac{\mathrm{K}_{\mathbf{w}}}{\mathrm{K}_{\mathbf{a}}}=\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}
\end{aligned}
$$

d. Which of the two ions, $\mathrm{Na}^{+}(a q)$ or $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)$, affects the pH of the solution? Explain why.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }^{-(a q)}$ will affect the pH of the solution. Of the two ions formed when $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is added to water, only the $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-(a q)}$ has an equilibrium constant which will change the pH of water. The equilibrium constant for Na^{+}is so small that it does not change the pH of water.
e. Predict the products when $\mathrm{KCN}(s)$ is added to water. Will the pH of the solution formed when the salt is added to water be greater or less than 7 ?

$$
\begin{aligned}
& \stackrel{\mathbf{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{~K}^{+}(a q)+\mathrm{CN}^{-}(a q) \\
& \mathrm{KCN}(s) \stackrel{\mathbf{H C N}^{-}(a q)}{\rightleftharpoons}+\mathrm{OH}^{-}
\end{aligned}
$$

KCN is the salt of a strong base and a weak acid. The pH of the solution will be greater than 7 .

15a. Write the dissociation equation which describes what happens when $\mathrm{NH}_{4} \mathrm{Cl}$ (s) is added to water.

\[

\]

b. Write the equation which describes the acidic character of $\mathrm{NH}_{4}^{+}(a q)$. Write the equilibrium expression and calculate K_{a} for $\mathrm{NH}_{4}^{+}(a q)$.

$$
\begin{gathered}
\mathrm{NH}_{4}^{+}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{NH}_{3}(a q) \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{\mathrm{K}_{\mathbf{w}}}{\mathrm{K}_{\mathbf{b}}}=\frac{1 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}
\end{gathered}
$$

c. Write the equation which describes the basic character of $\mathrm{Cl}^{-}(a q)$. Write the equilibrium expression and estimate K_{b} for $\mathrm{Cl}^{-}(a q)$.
$\mathrm{Cl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCl}_{(a q)}+\mathrm{OH}^{-}(a q)$
$K_{b}=\frac{\left[\mathrm{HCl}^{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{Cl}^{-}\right]}=\frac{\mathbf{K}_{\mathbf{w}}}{\mathrm{K}_{\mathbf{a}}}=\frac{1 \times 10^{-14}}{\text { very large }}=$ very small
d. Which of the two ions, $\mathrm{NH}_{4}^{+}(a q)$ or $\mathrm{Cl}^{-}(a q)$, affects the pH of the solution?

Explain why.
Only $\mathrm{NH}_{4}^{+(a q)}$ will affect the $\mathbf{p H}$ of the solution. Of the two ions formed when $\mathrm{NH}_{4} \mathrm{Cl}$ is added to water, only the $\mathrm{NH}_{4}^{+}(a q)$ has an equilibrium constant which will change the pH of water. The equilibrium constant for Cl^{-}is so small it does not change the pH of water.
e. Predict the products when $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3}(s)$ is added to water. Will the pH of the solution formed when the salt is added to water be greater or less than 7 ?

$$
\mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3}(s) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{NO}_{3^{-}}{ }^{-}(a q)$
$\mathbf{C H}_{3} \mathrm{NH}_{3}{ }^{+}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathbf{N H}_{2}(a q)$
$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3}$ is a salt formed from a weak base $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ and a strong acid $\left(\mathrm{HNO}_{3}\right)$. The resulting solution is acidic, pH less than 7.

