During Class Invention Salts II

Name

1. Write a general chemical equation which describes how the salt of a weak acid and strong base behaves in aqueous solution.

The salt of a weak acid and a strong base has the general formula NaX.

 $NaX(aq) + H_2O(l) \implies HX(aq) + NaOH(aq)$

 $X^{-}(aq) + H_2O(l) \implies HX(aq) + OH^{-}(aq)$

2.. Calculate the pH of a 0.700 M NaC₂H₃O₂. $K_a(HC_2H_3O_2) = 1.8 \times 10^{-5}$

 $NaC_2H_3O_2(s) \rightarrow Na^+(aq) + C_2H_3O_2^-(aq)$ initial 0.700 0 0 -0.700 +0.700+0.700change equil 0 +0.700+0.700 $C_2H_3O_2^{-}(aq) + H_2O(aq) \implies HC_2H_3O_2(aq) + OH^{-}(aq)$ initial0.700 ----0 0 change ---+X $x=[C_2H_3O_2^-]_{Reac}$ -X +x equil0.700 - x---0 + x0 + x $K_{b} = \frac{1.0 \text{ x } 10^{-14}}{1.8 \text{ x } 10^{-5}} = \frac{[\text{HC}_{2}\text{H}_{3}\text{O}_{2}][\text{OH}^{-}]}{[\text{C}_{2}\text{H}_{3}\text{O}_{2}^{-}]}$ 5.56 x 10⁻¹⁰ = $\frac{(x)(x)}{0.700 - x}$ assume (.700 - x) = .7005.56 x $10^{-10}(0.700) = x^2$ $3.89 \ge 10^{-10} = x^2$ $1.97 \times 10^{-5} \text{ M} = x = [\text{OH}^{-1}]$ pOH = 4.71 and the pH = 9.29

3. Write a general chemical equation which describes how the salt of a weak base and strong acid behaves in aqueous solution.

The salt of a strong acid and a weak base has the general formula BHX.

BHX(s) \rightarrow BH⁺(aq) + X⁻(aq) BH⁺(aq) \ddot{a} B(aq) + H⁺(aq)

4. Calculate the pH of a 0.392 M CH₃NH₃NO₃. K_{h} (CH₃NH₂) = 4.4 x 10⁻⁴

 $CH_3NH_3NO_3(s) \rightarrow CH_3NH_3^+(aq) + NO_3^-(aq)$ 0.392 initial 0 0 -0.392 +0.392change +0.392equil 0 +0.392+0.392 $CH_3NH_3^+(aq)$ ä $CH_3NH_2(aq) + H^+(aq)$ initial0.392 0 0 x=[CH₃NH₃⁺]_{reacting} change -X +x +x equil0.392 - x0 + x**0 + x** $K_{a} = \frac{[CH_{3}NH_{2}][H^{+}]}{[CH_{3}NH_{3}^{+}]}$ $K_{a} = \frac{1.0 \text{ x } 10^{-14}}{4.4 \text{ x } 10^{-4}}$ 2.27 x 10⁻¹¹= $\frac{(x)(x)}{0.392 - x}$ assume (.392 - x) = .392 $2.27 \ge 10^{-11}(0.392) = x^2$ 8.90 x 10⁻¹² = x^2 $2.98 \times 10^{-6} \text{ M} = x = [\text{H}^+]$ pH = 5.52