\qquad

1. Write a general chemical equation which describes how the salt of a weak acid and strong base behaves in aqueous solution.

The salt of a weak acid and a strong base has the general formula NaX.
$\mathrm{NaX}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathbf{H X}(a q)+\mathrm{NaOH}(a q)$
$\mathbf{X}^{-}(a q)+\mathbf{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathbf{H X}(a q)+\mathbf{O H}^{-}(a q)$
2.. Calculate the pH of a $0.700 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} . \mathrm{K}_{\mathrm{a}}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=1.8 \times 10^{-5}$

$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(s) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(a q)$				
initial	0.700	0	0	
change	-0.700	+0.700	+0.700	
equil	0	+0.700	+0.700	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{OH}^{-}(a q)$				
initial0.700 --- 0				
change	-x	---	+x	$+\mathrm{X} \mathbf{x}=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]_{\text {Reac }}$
equil0.700-x---		$\mathbf{0}+\mathbf{x}$	$0+\mathrm{x}$	

$K_{b}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}$
$5.56 \times 10^{-10}=\frac{(\mathrm{x})(\mathrm{x})}{0.700-\mathrm{x}}$
assume $(.700-\mathrm{x})=.700$
$5.56 \times 10^{-10}(0.700)=x^{2}$
$3.89 \times 10^{-10}=x^{2}$
$1.97 \times 10^{-5} \mathrm{M}=\mathrm{x}=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=4.71$ and the $\mathrm{pH}=9.29$
3. Write a general chemical equation which describes how the salt of a weak base and strong acid behaves in aqueous solution.

The salt of a strong acid and a weak base has the general formula BHX.

$$
\mathbf{B H X}_{(s)} \rightarrow \mathbf{B H}^{+}(a q)+\mathbf{X}^{-}(a q)
$$

$$
\mathbf{B H}^{+}(a q) \quad \text { ä } \quad \mathbf{B}(a q)+\mathbf{H}^{+}(a q)
$$

4. Calculate the pH of a $0.392 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{NO}_{3} . \mathrm{K}_{\mathrm{b}}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)=4.4 \times 10^{-4}$

