Stoichiometry Part II

Name

Section_____

1. Given an equation

$$2\mathrm{C}_{2}\mathrm{H}_{6}(g) + 7\mathrm{O}_{2}(g) \xrightarrow{\Delta} 4\mathrm{CO}_{2}(g) + 6\mathrm{H}_{2}\mathrm{O}(g)$$

How many mol of CO₂ will be formed by the complete combustion of 6.6 mol C₂H₆?

The question can be interpreted into the ICE Table as we are looking for the Ending amount of CO₂ given 6.6 mol C₂H₆ and an excess of O₂. The amounts of CO₂(g) and H₂O(g) are assumed to be 0 initially.

		v			
	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial	6.6 mol	excess		0	0
Change					
Ending					

The question states that the 6.6 mol C_2H_6 are completely combusted then we know that 6.6 moles C_2H_6 will completely react. This places 6.6 mol in the Change row for C_2H_6 . Once we have an entry in the Change row we can use the stoichiometric coefficients to determine the other entries.

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial	6.6 mol	excess		0	0
Change	-6.6 mol				
Ending					

Calculate the moles of CO₂ formed

6.6 mol C₂H₆ $\left(\frac{4 \text{ mol CO}_2}{2 \text{ mol C}_2\text{H}_6}\right) = 13.2 \text{ mol CO}_2$

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	4CO ₂ (<i>g</i>)	$+ 6H_2O(g)$
Initial	6.6 mol	excess		0	0
Change	-6.6 mol			13.2 mol	
Ending				13.2 mol	

Since there were no mol of CO₂ initially,then the Ending amount of CO₂ is 0 + 13.2 mol = 13.2 mol

We can also determine the remaining entries in the Change row as

6.6 mol C₂H₆
$$\left(\frac{6 \text{ mol H}_2 O}{2 \text{ mol C}_2 H_6}\right) = 19.8 \text{ mol H}_2 O$$

6.6 mol C₂H₆ $\left(\frac{7 \text{ mol O}_2}{2 \text{ mol C}_2 H_6}\right) = 23.1 \text{ mol O}_2$

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial	6.6 mol	excess		0	0
Change	-6.6 mol	-23.1 mol		13.2 mol	19.8 mol
Ending	0 mol	excess		13.2 mol	19.8 mol

How many moles of C₂H₆, assuming excess oxygen, are required to form 3.7 mol H₂O?

The question can be interpreted into the ICE Table as we are looking for the Initial amount of C_2H_6 given 3.7 mol H_2O are formed (Ending amount) and an excess of O_2 . The amounts of $CO_2(g)$ and $H_2O(g)$ are assumed to be 0 initially.

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial		excess		0	0
Change					
Ending					3.7 mol

Since there was no H_2O present initially (and no CO_2) we can determine that 3.7 mol H_2O should be in the Change row.

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial		excess		0	0
Change					+3.7 mol
Ending					3.7 mol

Once we have an entry in the Change row we can use the stoichiometric coefficients to determine the other entries.

3.7 mol H ₂ O	$\left(\frac{2 \ mol \ C_2 H_6}{6 \ mol \ H_2 O}\right)$	$= 1.2 \text{ mol } C_2 H_6$			
	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	$4\text{CO}_2(g)$	$+ 6H_2O(g)$
Initial		excess		0	0
Change	-1.2 mol				+3.7 mol
Ending					3.7 mol

So there must be 1.2 mol C_2H_6 present initially for that much to react. Again we can use the stoichiometric coefficients to determine the other entries in the Change row and the Ending row.

 $3.7 \text{ mol } \text{H}_2\text{O}\left(\frac{4 \text{ mol } \text{CO}_2}{6 \text{ mol } \text{H}_2\text{O}}\right) = 2.47 \text{ mol } \text{C}_2\text{H}_6$

	7 mol O ₂	
$3.7 \text{ mol } H_2O$	6 mol H ₂ O	$= 4.32 \text{ mol } \mathrm{C}_{2}\mathrm{H}_{6}$

	$2C_2H_6(g)$	$+7O_{2}(g)$	\rightarrow	4CO ₂ (<i>g</i>)	$+ 6H_2O(g)$
Initial	1.2 mol	excess		0	0
Change	-1.2 mol	-4.32 mol		+2.47 mol	+3.7 mol
Ending	0 mol	excess		2.47 mol	3.7 mol

2. Determine the amount of iodine produced when 145 g of KI react with excess copper (II) chloride.

$$2\mathrm{CuCl}_{2}(s) + 4\mathrm{KI}(s) \rightarrow 2\mathrm{CuI}(s) + 4\mathrm{KCl}(s) + \mathrm{I}_{2}(s)$$

The question can be interpreted into the ICE Table as we are looking for the Ending amount of I₂ given 145 g KI and an excess of CuCl₂. The amounts of CuI, KCl and $I_{2(g)}$ are assumed to be 0 initially. The ICE Table entries must be in moles so we must first convert grams of KI to moles of KI using the molar mass of KI.

145 g KI
$$\left(\frac{1 \text{ mol KI}}{166 \text{ g}}\right)$$
 = 0.873 mol KI reacting

	$2CuCl_2(s)$	+ 4KI(s)	\rightarrow	2CuI(s)	+ 4KCl(s)	$+ I_{2}(s)$
Initial	excess	0.873 mol		0	0	0
Change		-0.873 mol				
Ending						

So we know that 0.873 mol of KI are reacting we can use the stoichiometric coefficients to calculate how much I_2 forms

 $0.873 \ mol \ KI \left(\frac{1 \ mol \ I_2}{4 \ mol \ KI}\right) = 0.218 \ mol \ I_2 \ formed$

	$2CuCl_2(s)$	+ 4KI(s)	\rightarrow	2CuI(s)	+ 4KCl(s)	$+ I_2(s)$
Initial	excess	0.873 mol		0	0	0
Change		-0.873 mol				+0.218 mol
Ending						+0.218 mol

Since there was no I₂ initially there is 0.218 mol in the Ending amount. If we want the grams of I₂ formed we need the molar mass of I₂.

$$0.218 \text{ mol } I_2 \left(\frac{254 \text{ g } I_2}{1 \text{ mol } I_2}\right) = 55.5 \text{ g } I_2 \text{ formed}$$

- 3. List the general steps required to solve any problem in which you are given the mass of each reactant and asked to calculate the mass of one or more products formed as the result of a complete reaction.
- 1. Balance the chemical equation which describes the chemical reaction and setup the ICE Table.
- 2. Use the molar mass of each substance to convert the grams of the substance to moles.
- 3. Enter the initial amounts into the ICE Table.
- 4. Find the entry (a reactant or product) for the Change row.
- 5. Use the unit conversion (mole ratio) from the balanced chemical equation to determine the number of moles of the other substances (reactants and products) in the Change row. Conclude which reactant is in excess and which is limiting.
- 5. Use the molar mass to convert from moles to grams.
 - 4. In the formation reaction

$$2\mathrm{SO}_2(g) + \mathrm{O}_2(g) \rightarrow 2\mathrm{SO}_3(g)$$

Calculate the number of moles of SO₃ formed when

a) 2.0 moles of SO_2 are reacted with 5.0 moles of O_2

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	2.0 mol	5.00 mol		0
Change				
Ending				

From the problem we can complete the Initial row.

But this questions does not tell us which reactant is in excess, so we must determine that ourselve. So we'll assume that all of SO₂ reacts and see what happens in the Change row of the ICE Table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	2.0 mol	5.00 mol		0
Change	-2.0 mol			
Ending				

Assuming that 2.00 mol SO₂ reacts we will use the stoichiometric coefficients to determine how much O₂ reacts;

 $2.0 \text{ mol } \text{SO}_2\left(\frac{1 \text{ mol } \text{O}_2}{2 \text{ mol } \text{SO}_2}\right) = 1.00 \text{ mol } \text{O}_2 \text{ reacts}$

T '4' 1	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	2.0 mol	5.00 mol		U

Change	-2.0 mol	-1.00 mol	
Ending			

Since 1.00 mol O_2 reacts and there are 5.00 mol O_2 initially O_2 is in excess and SO_2 is the limiting reagent. We can now calculate how much SO_3 is formed and finish out the ICE table.

	$(2 \mod SO_3)$	
$2.0 \text{ mol } SO_2$	$2 \mod SO_2$	= 2.00 mol SO ₃ formed

	2SO ₂ (g)	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	2.0 mol	5.00 mol		0
Change	-2.0 mol	-1.00 mol		2.00 mol
Ending	0 mol	4.00 mol		2.00 mol

b) 6.0 moles of O_2 are reacted with 4.0 moles SO_2

From the problem we can complete the Initial row.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	4.0 mol	6.00 mol		0
Change				
Ending				

But this question does not tell us which reactant is in excess, so we must determine that ourselve. So we'll assume that all of SO₂ reacts and see what happens in the Change row of the ICE Table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	4.0 mol	6.00 mol		0
Change	-4.0 mol			
Ending				

Assuming that 4.00 mol SO_2 reacts we will use the stoichiometric coefficients to determine how much O_2 reacts;

4.0 mol SO₂ $\left(\frac{1 \text{ mol } O_2}{2 \text{ mol } SO_2}\right)$ = 2.00 mol O₂ reacts

	(/			
	$2SO_2(g)$	$+ O_2(g)$	→	2SO ₃ (g)
Initial	4.0 mol	6.00 mol		0
Change	-4.0 mol	-2.00 mol		
Ending				

Since 2.00 mol O_2 reacts and there are 6.00 mol O_2 initially O_2 is in excess and SO_2 is the limiting reagent. We can now calculate how much SO_3 is formed and finish out the ICE table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	4.0 mol	6.00 mol		0
Change	-4.0 mol	-2.00 mol		4.00 mol
Ending	0 mol	4.00 mol		4.00 mol

4.0 mol SO₂ $\left(\frac{2 \text{ mol SO}_3}{2 \text{ mol SO}_2}\right)$ = 4.00 mol SO₃ formed

c) 9.0 moles of O_2 are reacted with 5.0 moles of SO_2

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	2SO ₃ (<i>g</i>)
Initial	5.0 mol	9.00 mol		0
Change				
Ending				

But this questions does not tell us which reactant is in excess, so we must determine that ourselve. So we'll assume that all of SO₂ reacts and see what happens in the Change row of the ICE Table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	5.0 mol	9.00 mol		0
Change	-5.0 mol			
Ending				

Assuming that 5.00 mol SO₂ reacts we will use the stoichiometric coefficients to determine how much O₂ reacts;

5.0 mol SO₂ $\left(\frac{1 \text{ mol } O_2}{2 \text{ mol } SO_2}\right) = 2.50 \text{ mol } O_2 \text{ reacts}$

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	5.0 mol	9.00 mol		0
Change	-5.0 mol	-2.50 mol		
Ending				

Since 2.50 mol O₂ reacts and there are 9.00 mol O₂ initially O₂ is in excess and SO₂ is the limiting reagent. We can now calculate how much SO₃ is formed and finish out the ICE table.

 $5.0 \text{ mol } \text{SO}_2\left(\frac{2 \text{ mol } \text{SO}_3}{2 \text{ mol } \text{SO}_2}\right) = 5.00 \text{ mol } \text{SO}_3 \text{ formed}$

	2SO ₂ (g)	$+ O_2(g)$	\rightarrow	2SO ₃ (g)
Initial	5.0 mol	9.00 mol		0
Change	-5.0 mol	-2.50 mol		5.00 mol

Ending	0 mol	6.50 mol	5.00 mol

d)0.0812 moles of SO₂ react with 0.125 moles of O₂

From the problem we can complete the Initial row.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	0.0812 mol	0.125 mol		0
Change				
Ending				

But this questions does not tell us which reactant is in excess, so we must determine that ourselve. So we'll assume that all of SO_2 reacts and see what happens in the Change row of the ICE Table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	0.0812 mol	0.125 mol		0
Change	-0.0812 mol			
Ending				

Assuming that 0.0812 mol SO₂ reacts we will use the stoichiometric coefficients to determine how much O₂ reacts;

 $0.0812 \text{ mol } \text{SO}_2\left(\frac{1 \text{ mol } \text{O}_2}{2 \text{ mol } \text{SO}_2}\right) = 0.0406 \text{ mol } \text{O}_2 \text{ reacts}$

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	0.0812 mol	0.125 mol		0
Change	-0.0812 mol	-0.0406 mol		
Ending				

Since 0.0406 mol O_2 reacts and there are 0.125 mol O_2 initially O_2 is in excess and SO_2 is the limiting reagent. We can now calculate how much SO_3 is formed and finish out the ICE table.

 $0.0812 \text{ mol SO}_2\left(\frac{2 \text{ mol SO}_3}{2 \text{ mol SO}_2}\right) = 0.0812 \text{ mol SO}_3 \text{ formed}$

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	2SO ₃ (<i>g</i>)
Initial	0.0812 mol	0.125 mol		0
Change	-0.0812 mol	-0.0406 mol		0.0812 mol
Ending	0 mol	0.0844 mol		0.0812 mol

e)20.0 g SO₂ react with 15.0 g of O_2

The amounts provided are in grams, so we need to convert those to moles before inserting into the ICE table;

$$20.0 \text{ g } \text{SO}_2\left(\frac{1 \text{ mol } \text{SO}_2}{64.0 \text{ g}}\right) = 0.313 \text{ mol } \text{SO}_2 \text{ reacting}$$

15.0 g O₂ $\left(\frac{1 \text{ mol } \text{O}_2}{32.0 \text{ g}}\right) = 0.469 \text{ mol } \text{O}_2 \text{ reacting}$

From the problem we can complete the Initial row.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	0.313 mol	0.469 mol		0
Change				
Ending				

But this questions does not tell us which reactant is in excess, so we must determine that ourselves. So we'll assume that all of SO_2 reacts and see what happens in the Change row of the ICE Table.

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	2SO ₃ (<i>g</i>)
Initial	0.313 mol	0.469 mol		0
Change	-0.313 mol			
Ending				

Assuming that 0.313 mol SO₂ reacts we will use the stoichiometric coefficients to determine how much O₂ reacts;

$$0.313 \text{ mol } \text{SO}_2\left(\frac{1 \text{ mol } \text{O}_2}{2 \text{ mol } \text{SO}_2}\right) = 0.157 \text{ mol } \text{O}_2 \text{ reacts}$$

	$2SO_2(g)$	$+ O_2(g)$	\rightarrow	$2SO_3(g)$
Initial	0.313 mol	0.469 mol		0
Change	-0.313 mol	-0.157 mol		
Ending				

Since 0.157 mol O₂ reacts and there are 0.469 mol O₂ initially O₂ is in excess and SO₂ is the limiting reagent. We can now calculate how much SO₃ is formed and finish out the ICE table.

 $0.313 \text{ mol SO}_2\left(\frac{2 \text{ mol SO}_3}{2 \text{ mol SO}_2}\right) = 0.313 \text{ mol SO}_3 \text{ formed}$

	2SO ₂ (g)	$+ O_2(g)$	\rightarrow	2SO ₃ (<i>g</i>)
Initial	0.313 mol	0.469 mol		0
Change	-0.313 mol	-0.157 mol		
Ending	0 mol	0.312 mol		0.313 mol

Now we'll convert the moles of SO₃ to grams

$$0.313 \text{ mol SO}_3\left(\frac{80.0 \text{ g SO}_3}{1 \text{ mol SO}_3}\right) = 25.0 \text{ g SO}_3 \text{ formed}$$