During Class Invention #

Name(s) with Lab section in Group

Strong Acids and the Equilibrium Constant

1. The chemical equation which describes how HCl dissociates in aqueous solution is,

 $\text{HCl}(aq) \rightleftharpoons \text{H}^+(aq) + \text{Cl}^-(aq)$

a. In the demonstration performed earlier, the initial concentration of HCl is 0.100 M. In the space provided below (ICE Table), enter the initial concentration of HCl, H⁺ and Cl⁻. Based on the measured pH of this solution, calculate and enter the equilibrium concentration of H⁺.

	HCl(aq)	\rightleftharpoons H ⁺ (aq)	+ $Cl^{-}(aq)$
Initial Concentrations	0.100 M	~ 0 M	0 M
Change	-0.1 M	+0.1 M	+0.1 M
Equilibrium Concentrations	0 M	+0.1 M	+0.1 M

b. Calculate the change in [H⁺].

The [H⁺], based on the measured pH, is 0.1 M. Actually, the initial $[H^+]_0$ is 1 x 10⁻⁷ M. But, for our purposes, we can assume the initial [H⁺] is 0 M. So the change in [H⁺] is 0.100 M.

c. Using the balanced chemical equation and the calculated change in [H⁺], calculate the change in HCl and Cl⁻.

Since the stoichiometry in the balanced chemical equation is 1 : 1, the change in the [HCl] must be equal to change in [H⁺]. Therefore, Δ [H⁺] = - Δ [HCl] and Δ [H⁺] = Δ [Cl⁻] = 0.100 M

d. Calculate the equilibrium concentration of HCl and Cl⁻.

 $[HCl]_{eq} = [HCl]_0 - \Delta[HCl] = 0.100 \text{ M} - 0.100 \text{ M} = \sim 0 \text{ M}$ $[Cl^-]_{eq} = [Cl^-]_0 + \Delta[Cl^-] = 0 \text{ M} + 0.100 \text{ M} = 0.100 \text{ M}$

e. Estimate the equilibrium constant for the dissociation of HCl(aq).

 $K_{a} = \frac{[\text{H}^{+}][\text{Cl}^{-}]}{[\text{HCl}]} = \frac{0.1 \text{ M} \cdot 0.1 \text{ M}}{\sim 0 \text{ M}} = \text{very large number}$ The value is approximately 1 x 10¹².