During Class Invention
Temperature Dependence of the Rate Constant

Name
TA Name \qquad
Lab Section \# \qquad

1a. The following rate data was obtained at different temperatures for the reaction

$$
\mathrm{O}_{3}(g)+\mathrm{NO}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{NO}_{2}(g)
$$

Temperature (K)	$\mathrm{k}\left(\mathrm{M}^{-1} \cdot \mathrm{sec}^{-1}\right)$
600	0.28
650	0.22
700	1.30
750	6.00
800	23.0

Sketch the plot of $\ln \mathrm{k}$ (y-axis) versus $\frac{1}{\text { temperature }}(x$-axis) .
$\ln k$ versus $\mathbf{1 / T}$

b. Write the Arrhenius equation and identify each term

$$
\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

k_{1} and k_{2} are both rate constants at T_{1} and T_{2}, respectively. E_{a} is the activation energy for the reaction and R is the ideal gas constant. The value of R is $8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$.
c. Define the term activation energy.

The activation energy, $\mathrm{E}_{\mathbf{a}}$, represents a measure of the energy barrier colliding molecules must surmount if they are to react rather than to recoil from one another. It is assumed that every pair of molecules with energy less than E_{a} will not react and every pair with energy greater than E_{a} and the proper orientation will react.
d. Determine the activation energy in the plot y ou made at the beginning of this problem.

From the plot

$$
\begin{aligned}
& \text { Slope }=-1.61 \times 10^{4}=-\frac{E_{a}}{R} \\
& E_{a}=1.61 \times 10^{4} \mathrm{~K} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}=134 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

2a. At $300{ }^{\circ} \mathrm{C}$ the rate constant for the reaction

is $2.41 \times 10^{-10} \mathrm{sec}^{-1}$. At $400{ }^{\circ} \mathrm{C}$ the rate constant is $1.16 \times 10^{-6} \mathrm{sec}^{-1}$. Calculate the activation energy for the reaction.

$$
\begin{aligned}
& \ln \left(\frac{1.16 \times 10^{-6}}{2.41 \times 10^{-10}}\right)=\frac{E_{a}}{R}\left(\frac{1}{573}-\frac{1}{673}\right) \\
& 8.479=\frac{\mathrm{E}_{\mathrm{a}}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}}\left(2.593 \times 10^{-4}\right) \\
& \mathrm{E}_{\mathrm{a}}=272 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

b. Estimate the rate of the rearrangement reaction at $800^{\circ} \mathrm{C}$.
$\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{1.16 \times 10^{-6}}{\mathrm{k}_{2}}\right)=\frac{272000 \frac{\mathrm{~J}}{\mathrm{~mol}}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}}\left(\frac{1}{1073 \mathrm{~K}}-\frac{1}{673 \mathrm{~K}}\right)$
$\ln \left(\frac{1.16 \times 10^{-6}}{k_{2}}\right)=32716 \mathrm{~K}\left(-5.54 \times 10^{-4} \mathrm{~K}^{-1}\right)$
$\ln \left(\frac{1.16 \times 10^{-6}}{k_{2}}\right)=\mathbf{- 1 8 . 1}$
take the $\exp ()$ of both sides
$\exp \left(\ln \left(\frac{1.16 \times 10^{-6}}{k_{2}}\right)\right)=\mathrm{e}^{-18.1}$
$\frac{1.16 \times 10^{-6}}{k_{2}}=1.38 \times 10^{-8}$
$\mathrm{k}_{\mathbf{2}}=84.1 \mathrm{~s}^{-1}$
c. If the activation energy for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $1.0 \times 10^{2} \frac{\mathrm{~kJ}}{\mathrm{~mol}}$, calculate the temperature change necessary to double the rate at room temperature.
The rate constant, k_{2}, at the higher temperature will twice the rate constant, k_{1}, at the lower temperature. This can be expressed as,

$$
k_{2}=2 k_{1}
$$

and substituted in the Arrhenius equation. The problem specifies E_{a}, and that the T_{1} can be assumed to be room temperature, or 298 K . Given the Arrhenius equation,
$\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
and substituting,
$\ln \left(\frac{\mathrm{k}_{1}}{2 \mathrm{k}_{1}}\right)=\frac{100000 \frac{\mathrm{~J}}{\mathrm{~mol}}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{298}\right)$
$\ln \left(\frac{1}{2}\right)=1.20 \times 10^{4} \mathrm{~K}\left(\frac{1}{\mathrm{~T}_{2}}-3.36 \times 10^{-3} \mathrm{~K}^{-1}\right)$
$-0.693=1.20 \times 10^{4} \mathrm{~K}\left(\frac{1}{\mathrm{~T}_{2}}-3.36 \times 10^{-3} \mathrm{~K}^{-1}\right)$
$-5.78 \times 10^{-5} \mathrm{~K}^{-1}=\left(\frac{1}{\mathrm{~T}_{2}}-3.36 \times 10^{-3} \mathrm{~K}^{-1}\right)$
$\frac{1}{\mathrm{~T}_{2}}=3.30 \times 10^{-3} \mathrm{~K}^{-1} \quad \mathrm{~T}_{2}=303 \mathrm{~K}$ Therefore, $\Delta \mathrm{T}=5 \mathrm{~K}$
3. Sketch the energy profile diagram for the exothermic reaction

$$
\mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

and label the important features, including reactants, products, activated complex, the energy of activation and the enthalpy of the reaction. See Appendix III for recommended demonstration, video, or computer resources.

Reaction Coordinate

