Chem 1515	Name	
During Class Invention		
Spring 2008	I A Name	
Titration Between a Weak Acid and A Strong Base		Lab Section #

1. Qualitatively, describe how the pH of a solution of a weak acid changes when a solution of strong base is added to it.

The pH of a solution of a weak acid will increase when a solution containing a strong base is added to it.

a. A titration is performed by adding 0.200 M NaOH to 24 mL of 0.350 M HOCl.

ate the pH befor	e additio	on of an	y NaOH	•	
HOCI ≓	H+	+	OCI-		
.350 M		~0		0	
-X		+x		+x	$\mathbf{x} = [HOCl]_{diss}$
.350 - x		X		Х	
Ka	= [H+][([HC	OCI-] DCI]			
3.0 x 10 ⁻⁸	$=\frac{(\mathbf{x})(\mathbf{x})}{.350}$) x	assume	e x <<	0.0350
3.0 x 10 ⁻⁸	$=\frac{x^2}{0.350}$				
1.05 x 10 ⁻⁸	$= x^2$				
1.02 x 10 ⁻⁴ M	= x = [H	I +]			
pH	= 3.99				
	the the pH befor HOCI \implies .350 M -x .350 - x K _a 3.0 x 10 ⁻⁸ 1.05 x 10 ⁻⁸ 1.02 x 10 ⁻⁴ M pH	the pH before addition HOCl \rightleftharpoons H ⁺ .350 M -x .350 - x K _a = $\frac{[H^+][0]}{[HC]}$ 3.0 x 10 ⁻⁸ = $\frac{(x)(x)}{(x)^3}$ 3.0 x 10 ⁻⁸ = $\frac{x^2}{(x)^3}$ 1.05 x 10 ⁻⁸ = x ² 1.02 x 10 ⁻⁴ M = x = [H pH = 3.99	the pH before addition of an HOCl \rightleftharpoons H ⁺ + .350 M ~0 -x +x .350 - x x K _a = $\frac{[H^+][OCl^-]}{[HOCl]}$ 3.0 x 10 ⁻⁸ = $\frac{(x)(x)}{.350 - x}$ 3.0 x 10 ⁻⁸ = $\frac{x^2}{0.350}$ 1.05 x 10 ⁻⁸ = x ² 1.02 x 10 ⁻⁴ M = x = [H ⁺] pH = 3.99	the pH before addition of any NaOH HOCl \rightleftharpoons H ⁺ + OCl ⁻ .350 M ~0 .x +x .350 - x x K _a = $\frac{[H^+][OCl^-]}{[HOCl]}$ 3.0 x 10 ⁻⁸ = $\frac{(x)(x)}{.350 - x}$ assume 3.0 x 10 ⁻⁸ = $\frac{x^2}{0.350}$ 1.05 x 10 ⁻⁸ = x ² 1.02 x 10 ⁻⁴ M = x = [H ⁺] pH = 3.99	the pH before addition of any NaOH. HOCl \rightleftharpoons H ⁺ + OCl ⁻ .350 M ~0 0 -x +x +x +x .350 - x x x x K _a = $\frac{[H^+][OCl^-]}{[HOCl]}$ 3.0 x 10 ⁻⁸ = $\frac{(x)(x)}{.350 - x}$ assume x << 3.0 x 10 ⁻⁸ = $\frac{x^2}{0.350}$ 1.05 x 10 ⁻⁸ = x ² 1.02 x 10 ⁻⁴ M = x = [H ⁺] pH = 3.99

ii) Calculate the pH after the addition of 5.0 mL of the base. Add 5.0 mL of NaOH 5.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0010 \text{ mol NaOH}$ 24.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.350 \text{ mol}}{1 \text{ L}}\right) = 0.0084 \text{ mol HCl}$ HOCl(aq) + NaOH(aq) $OCl^{-}(aq) +$ $H_2O(l)$ -0.0084 0.0010 Ι 0 Ε 0.0074 0 0.001 $= 0.255 \text{ M} [OCI^{-}] = \frac{0.001 \text{ mol}}{0.029 \text{ L}}$ 0.0074 mol $[HOCI] = \frac{0.029 \text{ L}}{0.029 \text{ L}}$ = 0.0345 M

ii)Calculate the pH after the addition of 5.0 mL of the base. (Continued) HOCl 🛁 H+ OCI-+ Ι .255 ~0 0.0345 С +x $x = [HOCl]_{diss}$ -X +x .255 - x Ε 0.0345 + xХ $K_a = \frac{[H^+][OCl^-]}{[HOCl]}$ $3.0 \ge 10^{-8} = \frac{(x)(0.0345 + x)}{0.255 - x}$ assume x << 0.0345 $3.0 \ge 10^{-8} = \frac{(x)(0.0345)}{0.255}$ $2.22 \times 10^{-7} = x = [H^+]$ pH = 6.65Calculate the pH after the addition of 15.0 mL of the base. Add 15.0 mL of NaOH 15.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0030 \text{ mol NaOH}$ **⇒** OCl[−](*aq*) + HOCl(aq) + NaOH(aq) $H_2O(l)$ 0.0030 Ι 0.0084 0 E 0.0054 0 0.0030 $[HOC1] = \frac{.0054 \text{ mol}}{0.039 \text{ L}} = 0.138 \text{ M} \ [OC1^-] = \frac{.003 \text{ mol}}{0.039 \text{ L}} = 0.0769 \text{ M}$ HOCI ≓ OCI-H+ + Ι 0.138 ~0 0.0769 С +x $x = [HOCl]_{diss}$ -X +x Ε **0.138-**x Х 0.0769 + x $K_a = \frac{[H^+][OCl^-]}{[HOCl]}$ $3.0 \ge 10^{-8} = \frac{(x)(0.0769 + x)}{0.138 - x}$ assume x << 0.0769 $3.0 \ge 10^{-8} = \frac{(x)(0.0769)}{0.138}$ 5.38 x 10^{-8} = x = [H⁺] = 7.27 pН Calculate the pH after the addition of 25.0 mL of the base. Add 25.0 mL of NaOH 25.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0050 \text{ mol NaOH}$ HOCl(aq) + NaOH(aq) $OCl^{-}(aq) +$ $H_2O(l)$ Ι 0.0084 0.0050 0 -0.0034 0 0.005 E

 $[\text{HOCI}] = \frac{.0034 \text{ mol}}{0.049 \text{ L}} = 0.0694 \text{ M}[\text{OCI}^-] = \frac{.005 \text{ mol}}{0.049 \text{ L}} = 0.102 \text{ M}$ Calculate the pH after the addition of 25.0 mL of the base. (Continued) HOCI 🛁 H+ OCI-+ Ι 0.0694 ~0 0.102 С +x $x = [HOCl]_{diss}$ -X +x Ε 0.0694 -x 0.102 + xХ $K_a = \frac{[H^+][OCl^-]}{[HOCl]}$ $3.0 \ge 10^{-8} = \frac{(x)(0.102 + x)}{0.0694 - x}$ assume x << 0.0694 $3.0 \ge 10^{-8} = \frac{(x)(0.102)}{0.0694}$ $2.04 \times 10^{-8} = x = [H^+]$ pH = 7.69

Calculate the pH after the addition of 35.0 mL of the base.

Add 35.0 mL of NaOH 35.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0070 \text{ mol NaOH}$ HOCl(aq) + NaOH(aq) $OCl^{-}(aq) +$ $H_2O(l)$ Ι 0.0084 0.0070 0 E 0.0014 0 0.007 $[\text{HOCl}] = \frac{.0014 \text{ mol}}{0.059 \text{ L}} = 0.0237 \text{ M}[\text{OCl}^-] = \frac{.007 \text{ mol}}{0.059 \text{ L}} = 0.119 \text{ M}$ OCI-HOCI ≓ H+ + Ι 0.0237 ~0 0.119 С +x $x = [HOCl]_{diss}$ -X +x 0.0237 - x E 0.119 + xХ $K_a = \frac{[H^+][OCl^-]}{[HOCl]}$ $3.0 \ge 10^{-8} = \frac{(x)(0.119+x)}{0.0237 - x}$ assume x << 0.0237 $3.0 \ge 10^{-8} = \frac{(x)(0.119)}{0.0237}$ 5.97 x 10^{-9} = x = [H⁺] pН = 8.22

Calculate the pH after the addition of 40.0 mL of the base. Add 40.0 mL of NaOH 40.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0080 \text{ mol NaOH}$ HOCl(aq) + NaOH(aq) $OCl^{-}(aq) +$ $H_2O(l)$ 0.0084 0.0080 0 Ι E 0.0004 0 0.008 $[\text{HOCl}] = \frac{.0004 \text{ mol}}{0.064 \text{ L}} = 0.00625 \text{ M}$ $[OCI^-] = \frac{.008 \text{ mol}}{0.064 \text{ L}} = 0.125 \text{ M}$ Calculate the pH after the addition of 40.0 mL of the base. (Continued) OCI-HOCl ≓ H+ + Ι 0.00625 0.125 ~0 С -X +x $x = [HOCI]_{diss}$ +x Ε 0.00625 - x 0.125 + xХ $K_{a} = \frac{[H^{+}][OCl^{-}]}{[HOCl]}$ 3.0 x 10⁻⁸ = $\frac{(x)(0.125 + x)}{0.00625 - x}$ assume x << 0.00625 $3.0 \ge 10^{-8} = \frac{(x)(0.125)}{0.00625}$ $1.5 \ge 10^{-9} = x = [H^+]$ pH = 8.82iii) Calculate the volume of base needed to reach the equivalence point. MacidVacid = MbaseVbase $0.350 \text{ M} \cdot 24.0 \text{ mL} = 0.200 \text{ M} \cdot \text{V}_{\text{base}}$ $\frac{0.350 \text{ M} \cdot 24.0 \text{ mL}}{0.200 \text{ M}} = \text{V}_{\text{base}} = 42.0 \text{ mL}$

iv) What is the pH at the equivalence point? Add 42.0 mL of NaOH 42.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0084 \text{ mol NaOH}$ $HOCl(aq) + NaOH(aq) \implies OCl^{-}(aq) +$ $H_2O(l)$ 0.0084 Ι 0.0084 0 E 0 0.0084 0 $[OCI^{-}] = \frac{0.0084 \text{ mol}}{0.066 \text{ L}} = 0.127 \text{ M}$ $OCl^{-}(aq) + H_2O(l) \implies HOCl(aq) +$ $OH^{-}(aq)$ Ι 0.127 0 0 C -X +x +x E 0.127-x +x +x $K_{b} = \frac{K_{w}}{K_{a}} = \frac{1 \times 10^{-14}}{3.0 \times 10^{-8}} = \frac{[OH^{-}][HOCI]}{[OCI^{-}]}$ $3.33 \ge 10^{-7} = \frac{(x)(x)}{0.127 - x}$ assume x << 0.127 $3.33 \ge 10^{-7} = \frac{(x^2)}{0.127}$ 2.06 x 10⁻⁴ = x = $[OH^{-}]$ pOH = 3.69pH = 10.31v) Calculate the pH after adding 5.00 mL of NaOH past the equivalence point. Add 47.0 mL of NaOH 47.0 mL $\left(\frac{1 \text{ L}}{1000 \text{ mL}}\right) \left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right) = 0.0094 \text{ mol NaOH}$ $HOCl(aq) + NaOH(aq) = \ddot{a} = OCl^{-}(aq) + H_2O(l)$ **I0.0084** 0.0094 0 0.0084 E 0 0.0010 $[OCI^{-}] = \frac{0.0084 \text{ mol}}{0.071 \text{ L}} = 0.118 \text{ M}$ $[OH^{-}] = \frac{0.0010 \text{ mol}}{0.071 \text{ L}} = 0.0141 \text{ M}$ $OCI^{-}(aq) + H_2O(aq)$ \Rightarrow HOCl(aq) + OH⁻(l) I 0.118 0 .0141 C –x +x +x E0.118-x -.0141+x +x $K_{b} = \frac{K_{w}}{K_{a}} = \frac{1 \times 10^{-14}}{3.0 \times 10^{-8}} = \frac{[OH^{-}][HOCl]}{[OCl^{-}]}$

 $3.33 \times 10^{-7} = \frac{(.0141 + x)(x)}{.118 - x} \text{ assume } x \ll 0.0141$ $3.33 \times 10^{-7} = \frac{(.0141)(x)}{.118}$ $2.79 \times 10^{-6} = x$ $[OH^{-}] = 0.0141 + x = 0.0141 \text{ M}$ pOH = 1.85 pH = 12.15

- 6. Using the designated space below, draw the titration curve for each of the following cases. See Appendix III for recommended demonstration, video, or computer resources.
 - a) 50.0 mL of 1.00 M $HC_2H_3O_2$ and 1.00 M NaOH
 - b) 50.0 mL of 0.0100 M HC_2H_3O_2 and 0.0100 M NaOH