Chem 1515
During Class Invention
Spring 2008
Titration Between a Weak Acid and A Strong Base

Name
TA Name \qquad
Lab Section \# \qquad

1. Qualitatively, describe how the pH of a solution of a weak acid changes when a solution of strong base is added to it.

The pH of a solution of a weak acid will increase when a solution containing a strong base is added to it.
a. A titration is performed by adding 0.200 M NaOH to 24 mL of 0.350 M HOCl .
i)Calculate the pH before addition of any NaOH .

	$\mathrm{HOCl}=$	+	OCl^{-}	
I	. 350 M	\sim	0	
C	-x	+x	+x	$\mathrm{x}=[\mathrm{HOCl}]_{\text {diss }}$
E	. $350-\mathrm{x}$	\mathbf{x}	x	

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]} \\
3.0 \times 10^{-8} & =\frac{(\mathrm{x})(\mathrm{x})}{\mathbf{3 5 0}-\mathrm{x}} \quad \text { assume } \mathrm{x} \ll 0.0350 \\
3.0 \times 10^{-8} & =\frac{\mathbf{x}^{2}}{0.350} \\
1.05 \times 10^{-8} & =\mathrm{x}^{2} \\
1.02 \times 10^{-4} \mathrm{M} & =\mathrm{x}=\left[\mathrm{H}^{+}\right] \\
\mathrm{pH} & =3.99
\end{aligned}
$$

ii) Calculate the pH after the addition of 5.0 mL of the base.

Add 5.0 mL of NaOH
$5.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=0.0010 \mathrm{~mol} \mathrm{NaOH}$
$24.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.350 \mathrm{~mol}}{1 \mathrm{~L}}\right)=\mathbf{0 . 0 0 8 4} \mathrm{mol} \mathrm{HCl}$

	$\mathrm{HOCl}_{(a q)}$	$+\mathrm{NaOH}(a q)$	\rightleftharpoons	$\mathrm{OCl}^{-}(a q)+$	$\mathrm{H}_{2} \mathrm{O}(l)$
I	0.0084	0.0010		0	
E	0.0074	0		0.001	-
	$\mathrm{CI}]=\frac{\mathbf{0 . 0 0}}{\mathbf{0 .}}$	$\frac{74 \mathrm{~mol}}{29 \mathrm{~L}}=0.25$		$\left.\mathrm{Cl}^{-}\right]=\frac{\mathbf{0 . 0 0 1}}{\mathbf{0 . 0 2}}$	$=\mathbf{0 . 0 3 4}$

ii)Calculate the pH after the addition of 5.0 mL of the base. (Continued)

Calculate the pH after the addition of 15.0 mL of the base.
Add 15.0 mL of $\mathbf{N a O H}$

$$
\begin{aligned}
& 15.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=\mathbf{0 . 0 0 3 0} \mathbf{~ m o l ~} \mathrm{NaOH} \\
& \mathrm{HOCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightleftharpoons \mathrm{OCl}^{-}(a q)+\quad \mathrm{H}_{2} \mathrm{O}_{(l)} \\
& \begin{array}{llll}
\text { I } & 0.0084 & 0.0030 & 0
\end{array} \\
& \begin{array}{llll}
\text { E } & 0.0054 & 0 & 0.0030
\end{array} \\
& {[\mathrm{HOCl}]=\frac{.0054 \mathrm{~mol}}{0.039 \mathrm{~L}}=0.138 \mathrm{M}\left[\mathrm{OCl}^{-}\right]=\frac{.003 \mathrm{~mol}}{\mathbf{0 . 0 3 9 \mathrm { L }}=\mathbf{0 . 0 7 6 9} \mathrm{M}}} \\
& \begin{array}{lc}
\mathrm{OCl} & \mathrm{H}^{+} \\
\sim 0
\end{array} \quad+\quad \begin{array}{c}
\mathrm{OCl}^{-} \\
\mathbf{0 . 0 7 6 9}
\end{array} \\
& \text { C }-x \quad+x \quad+x \quad x=[H O C l]_{\text {diss }} \\
& \text { E 0.138-x } \quad \text { x } \quad 0.0769 \text { + } \mathbf{x} \\
& K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]} \\
& 3.0 \times 10^{-8}=\frac{(\mathrm{x})(0.0769+\mathrm{x})}{0.138-\mathrm{x}} \quad \text { assume } \mathrm{x} \ll 0.0769 \\
& 3.0 \times 10^{-8}=\frac{(\mathrm{x})(0.0769)}{0.138} \\
& 5.38 \times 10^{-8}=\mathrm{x}=\left[\mathrm{H}^{+}\right] \quad \mathrm{pH} \quad=7.27
\end{aligned}
$$

Calculate the pH after the addition of 25.0 mL of the base.
Add 25.0 mL of $\mathbf{N a O H}$
$25.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=0.0050 \mathrm{~mol} \mathrm{NaOH}$

| | $\mathrm{HOCl}_{(a q)}+\mathrm{NaOH}_{(a q)}$ | \rightleftharpoons | $\mathrm{OCl}^{-}(a q)+$ | $\mathrm{H}_{2} \mathrm{O}(l)$ |
| ---: | :--- | :---: | :---: | :---: | :---: |
| I | $\mathbf{0 . 0 0 8 4}$ | $\mathbf{0 . 0 0 5 0}$ | 0 | - |
| E | $\mathbf{0 . 0 0 3 4}$ | 0 | 0.005 | - |

$$
[\mathrm{HOCl}]=\frac{.0034 \mathrm{~mol}}{0.049 \mathrm{~L}}=0.0694 \mathrm{M}\left[\mathrm{OCl}^{-}\right]=\frac{.005 \mathrm{~mol}}{0.049 \mathrm{~L}}=0.102 \mathrm{M}
$$

Calculate the pH after the addition of 25.0 mL of the base. (Continued)

$$
\begin{aligned}
& \mathrm{HOCl} \rightleftharpoons \mathrm{H}^{+} \quad+\quad \mathrm{OCl}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& 3.0 \times 10^{-8}=\frac{(\mathrm{x})(0.102+\mathrm{x})}{0.0694-\mathrm{x}} \text { assume } \mathrm{x} \ll 0.0694 \\
& 3.0 \times 10^{-8}=\frac{(\mathrm{x})(0.102)}{0.0694} \\
& 2.04 \times 10^{-8}=x=\left[H^{+}\right] \quad \mathrm{pH}=7.69
\end{aligned}
$$

```
Calculate the pH after the addition of 35.0 mL of the base.
Add 35.0 mL of NaOH
\(35.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=\mathbf{0 . 0 0 7 0} \mathrm{mol} \mathrm{NaOH}\)
\begin{tabular}{clcccc} 
& \(\mathrm{HOCl}(a q)+\mathrm{NaOH}(a q)\) & \(\rightleftharpoons\) & \(\mathrm{OCl}^{-}(a q)+\) & \(\mathbf{H}_{2} \mathrm{O}(l)\) \\
I & \(\mathbf{0 . 0 0 8 4}\) & \(\mathbf{0 . 0 0 7 0}\) & & 0 & - \\
E & \(\mathbf{0 . 0 0 1 4}\) & \(\mathbf{0}\) & 0.007 & -
\end{tabular}
\[
[\mathrm{HOCl}]=\frac{.0014 \mathrm{~mol}}{0.059 \mathrm{~L}}=0.0237 \mathrm{M}\left[\mathrm{OCl}^{-}\right]=\frac{.007 \mathrm{~mol}}{0.059 \mathrm{~L}}=0.119 \mathrm{M}
\]
```

```
\[
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]} \\
3.0 \times 10^{-8} & =\frac{(\mathrm{x})(0.119+\mathrm{x})}{0.0237-\mathrm{x}} \text { assume } \mathrm{x} \ll 0.0237 \\
3.0 \times 10^{-8} & =\frac{(\mathbf{x})(0.119)}{0.0237} \\
5.97 \times 10^{-9} & =\mathrm{x}=\left[\mathrm{H}^{+}\right] \quad \text { pH }=8.22
\end{aligned}
\]
```

Calculate the pH after the addition of 40.0 mL of the base.
Add 40.0 mL of NaOH

$$
\begin{aligned}
& 40.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=0.0080 \mathrm{~mol} \mathrm{NaOH} \\
& \mathrm{HOCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightleftharpoons \mathrm{OCl}^{-}(a q)+\quad \mathrm{H}_{2} \mathrm{O}_{(l)} \\
& \begin{array}{llll}
\text { I } & 0.0084 & 0.0080 & 0
\end{array} \\
& \begin{array}{llll}
\text { E } & 0.0004 & 0 & \mathbf{0 . 0 0 8}
\end{array} \\
& {[\mathrm{HOCl}]=\frac{.0004 \mathrm{~mol}}{0.064 \mathrm{~L}}=0.00625 \mathrm{M} \quad\left[\mathrm{OCl}^{-}\right]=\frac{.008 \mathrm{~mol}}{0.064 \mathrm{~L}}=0.125 \mathrm{M}}
\end{aligned}
$$

Calculate the pH after the addition of 40.0 mL of the base. (Continued)

iii) Calculate the volume of base needed to reach the equivalence point.

$$
\begin{aligned}
& M_{\text {acid }} V_{\text {acid }}=M_{\text {base }} V_{\text {base }} \\
& 0.350 \mathrm{M} \cdot 24.0 \mathrm{~mL}=0.200 \mathrm{M} \cdot V_{\text {base }} \\
& \frac{0.350 \mathrm{M} \cdot \mathbf{2 4 . 0 \mathrm { mL }}}{0.200 \mathrm{M}}=V_{\text {base }}=42.0 \mathrm{~mL}
\end{aligned}
$$

iv) What is the pH at the equivalence point?

Add 42.0 mL of $\mathbf{N a O H}$

$$
\begin{aligned}
& 42.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=\mathbf{0 . 0 0 8 4} \mathbf{~ m o l ~} \mathrm{NaOH} \\
& \mathrm{HOCl}_{(a q)}+\mathrm{NaOH}(a q) \rightleftharpoons \mathrm{OCl}^{-}(a q)+\quad \mathrm{H}_{2} \mathrm{O}(l) \\
& \begin{array}{llll}
\text { I } & 0.0084 & 0.0084 & 0
\end{array} \\
& \begin{array}{llll}
\text { E 0 0 } & 0.0084
\end{array} \\
& {\left[\mathrm{OCl}^{-}\right]=\frac{0.0084 \mathrm{~mol}}{0.066 \mathrm{~L}}=0.127 \mathrm{M}} \\
& \begin{array}{clccccc}
& \mathrm{OCl}^{-}(a q) & +\mathbf{H}_{2} \mathbf{O}(l) & \rightleftharpoons & \mathbf{H O C l}(a q)+ & \mathbf{O H}^{-}(a q) \\
\mathbf{I} & \mathbf{0 . 1 2 7} & - & & 0 & 0 & - \\
\mathbf{C} & -\mathbf{x} & - & & \mathbf{+ x} & +\mathbf{x} & \\
\mathbf{E} & \mathbf{0 . 1 2 7 - x} & - & & \mathbf{+ x} & +\mathbf{x} & -
\end{array} \\
& K_{b}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{3.0 \times 10^{-8}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HOCl}]}{\left[\mathrm{OCl}^{-}\right]} \\
& 3.33 \times 10^{-7}=\frac{(x)(x)}{0.127-x} \quad \text { assume } x \ll 0.127 \\
& 3.33 \times 10^{-7}=\frac{\left(\mathbf{x}^{2}\right)}{\mathbf{0 . 1 2 7}} \\
& 2.06 \times 10^{-4}=x=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=3.69 \quad \mathrm{pH}=\mathbf{1 0 . 3 1}
\end{aligned}
$$

v) Calculate the pH after adding 5.00 mL of NaOH past the equivalence point.

Add 47.0 mL of NaOH

```
\(47.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}}\right)=0.0094 \mathrm{~mol} \mathrm{NaOH}\)
\(\mathrm{HOCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \quad\) ä \(\quad \mathrm{OCl}^{-}(a q)+\mathbf{H}_{2} \mathrm{O}(l)\)
I0.0084 0.0094 0
\(\begin{array}{llll}\mathrm{E} & \mathbf{0} & \mathbf{0 . 0 0 1 0} & \mathbf{0 . 0 0 8 4}\end{array}\)
\(\left[\mathrm{OCl}^{-}\right]=\frac{0.0084 \mathrm{~mol}}{0.071 \mathrm{~L}}=0.118 \mathrm{M} \quad\left[\mathrm{OH}^{-}\right]=\frac{0.0010 \mathrm{~mol}}{0.071 \mathrm{~L}}=0.0141 \mathrm{M}\)
\(\mathrm{OCl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \rightleftharpoons \mathrm{HOCl}_{(a q)}+\mathrm{OH}^{-}(l)\)
I 0.118 - 0 . 0141
\(\begin{array}{llll}\mathrm{C} & -\mathrm{x} & - & +\mathrm{x} \\ +\mathrm{x}\end{array}\)
E0.118-x - \(+x\).0141+x
\(K_{b}=\frac{K_{W}}{K_{a}}=\frac{1 \times 10^{-14}}{3.0 \times 10^{-8}}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HOCl}]}{\left[\mathrm{OCl}^{-}\right]}\)
```

$$
\begin{aligned}
& 3.33 \times 10^{-7}=\frac{(.0141+\mathrm{x})(\mathrm{x})}{.118-\mathrm{x}} \quad \text { assume } \mathrm{x} \ll 0.0141 \\
& 3.33 \times 10^{-7} \quad=\frac{(.0141)(\mathrm{x})}{.118} \\
& 2.79 \times 10^{-6} \quad=\mathrm{x} \\
& {\left[\mathrm{OH}^{-}\right]=0.0141+\mathrm{x}=0.0141 \mathrm{M}} \\
& \mathrm{pOH} \quad=1.85 \quad \mathrm{pH}=\mathbf{1 2 . 1 5}
\end{aligned}
$$

6. Using the designated space below, draw the titration curve for each of the following cases. See Appendix III for recommended demonstration, video, or computer resources.
a) 50.0 mL of $1.00 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 1.00 M NaOH
b) 50.0 mL of $0.0100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.0100 M NaOH
