WEAK ACIDS AND THE EQUILIBRIUM CONSTANT

Name
Section

1. The chemical equation which describes how the weak acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ dissociates in aqueous solution is,

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

a. In the data you obtained earlier (Acids, Bases and pH, pg. 55), the initial concentration of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is 0.100 M . In the space provided below (ICE Table), enter the initial concentration of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, H^{+}, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$. Based on the measured pH of this solution, calculate and enter the equilibrium concentration of H^{+}.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

b. Calculate the change in $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
& \text { change in }\left[\mathrm{H}^{+}\right] .828=-10 q\left[\mathrm{H}^{t}\right] \\
& D H=2.828 \\
& \left.\omega_{H^{+}}\right]=0.00[32 \mathrm{~N}
\end{aligned}
$$

c. Using the balanced chemical equation and the calculated change in $\left[\mathrm{H}^{+}\right]$, calculate the change in

d. Calculate the equilibrium concentration of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)$.

$$
\begin{aligned}
& {\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]=[\mathrm{H}+]=0.00132 \mathrm{M}} \\
& {\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.0987 \mathrm{M}}
\end{aligned}
$$

e. Estimate the equilibrium constant for the dissociation of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$.

$$
K_{0}\left(H C_{2} H_{3} O_{2}\right)=\frac{(0.00123)(0), 00132)}{.0982}=128 \times 10^{-5}
$$

f. Calculate the magnitude of the equilibrium constant for benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, if a 0.100 M toluton has a $\mathrm{pH}=2.59$.

$$
E \quad .0974 \quad .00252 .00257
$$

$$
\begin{array}{rl}
p H & p=2.59 \\
10^{2.59}=\left[H^{+}\right] \\
K_{a} & =(.00257)(.00257) \\
& =6.0974 \times 10^{-5}
\end{array}
$$

g. Calculate the magnitude of the equilibrium constant for an aqueous solution of ammonia, if a
h. Calculate the pH of a solution which is $0.53 \mathrm{M} \mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ (nicotinic acid). $\left(\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-5}\right)$

$$
=2.56
$$

i. Calculate the pH of a solution which is $0.712 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$ (methylamine). $\left(\mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-4}\right)$

$$
\begin{aligned}
& {[\mathrm{OH}]=5,34 \times 10^{-3} \mathrm{M}} \\
& \text { oOH }=2,27 \\
& P H=14-2.27 \\
& =21,73
\end{aligned}
$$

$$
\begin{aligned}
& =-10 q\left(0.2 \times 10^{-3}\right) \\
& 2.7 \times 10^{-3} \mathrm{M}=x=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 0.100 \mathrm{M} \text { solution has a } \mathrm{pH}=11.13 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E. } 0987 \quad .00135,00135 \\
& {[-O H]=10^{-2,87}=} \\
& K_{6}=[.00135)(.00135) \\
& =1.8 \times 10^{-5}
\end{aligned}
$$

