Chem 1515
Problem Set \#8 Fall 2001

Name \qquad
TA Name \qquad Lab Section \# \qquad
ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, October 31, 2001.

PS8.1. A 1.00 liter container initially holds 0.257 moles of NOBr at a given temperature. The reaction which occurs is:

$$
2 \mathrm{NOBr}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)
$$

At equilibrium analysis shows 0.240 moles of NO and 0.120 moles of Br_{2}.
a) Which direction did the reaction proceed to establish (reach) equilibrium?
b) How many moles of NOBr reacted in order to form 0.240 moles of NO and 0.120 moles of Br_{2} ?
c) How many moles of NOBr remain after equilibrium was established?
d) What is the magnitude of K_{c} ?

PS8.2. In a container, the partial pressure of NOCl is initially 0.340 atm at a given temperature. The chemical equation which describes the reaction is:

$$
2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows 2 \mathrm{NOCl}_{(g)}
$$

At equilibrium analysis shows the partial pressure of NO is 0.0916 atm.
a) Which direction did the reaction proceed to establish (reach) equilibrium?
b) What is the partial pressure of NOCl which reacted in order for the partial pressure of NO to be 0.0916 atm ?
c) What is the partial pressure of Cl_{2} at equilibrium?
d) What is the partial pressure of NOCl at equilibrium?
b) What is the magnitude of K_{p} for the equation above?

PS8.3. A 1.00 liter container holds 1.06 moles of H_{2} and 1.57 moles of CO at a temperature of $162{ }^{\circ} \mathrm{C}$. At this temperature, the following reaction occurs,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}_{(g)}
$$

After equilibrium is established, analysis shows 0.200 moles of $\mathrm{CH}_{3} \mathrm{OH}$ in the container. Calculate the $[\mathrm{CO}]_{\mathrm{eq}},\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}$ and K_{c}.

PS8.4. The following reaction,

$$
2 \mathrm{HI}(g) \rightleftarrows \mathrm{I}_{2}(g)+\mathrm{H}_{2}(g)
$$

occurs at 298 K . If 2.00 mol of HI are placed into a 1.00 liter container and permitted to react, at equilibrium it is found that 20.0% of the HI has decomposed. Calculate K_{c} and K_{p}.

PS8.5. A 0.622 gram quantity of COBr_{2} is sealed in a glass bulb of 0.100 L volume and heated to a temperature of $73^{\circ} \mathrm{C}$. At $73^{\circ} \mathrm{C}$ the COBr_{2} partially decomposes according to the equation

$$
\mathrm{COBr}_{2(g)} \rightleftarrows \mathrm{CO}(g)+\mathrm{Br}_{2(g)}
$$

for which $\mathrm{K}_{\mathrm{c}}=0.190$. Calculate the concentration of each species at $73^{\circ} \mathrm{C}$.

PS8.6. The equilibrium constant, K_{p}, for the reaction

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftarrows \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

is 7.31. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures:
a) 1.0 atm of CO and 1.0 atm of $\mathrm{H}_{2} \mathrm{O}$.

PS8.6. (CONTINUED)
b) 1.0 atm of $\mathrm{CO}, 1.0 \mathrm{~atm}$ of $\mathrm{H}_{2} \mathrm{O}$ and 1.00 atm of H_{2}.
c) 1.0 atm of H_{2} and 1.0 atm of CO_{2}.

PS8.7. At 1000 K the equilibrium constant, K_{c}, for the reaction

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

is 0.833 . Calculate the concentrations of all species at equilibrium when 0.200 moles of NO_{2} are placed in a 2.00 L container at 1000 K .

PS8.8. The equilibrium constant, K_{p}, for the reaction

$$
2 \mathrm{NOBr}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)
$$

is 6.25 at $25^{\circ} \mathrm{C}$ and $\Delta \mathrm{H}^{\circ}=34.4 \mathrm{~kJ}$. Calculate the magnitude of the equilibrium constant at $50^{\circ} \mathrm{C}$.

PS8.9. Given the reaction

$$
\mathrm{XeF}_{4}(g) \rightleftarrows \mathrm{Xe}(g)+2 \mathrm{~F}_{2}(g)
$$

A 10.0 liter vessel at 298 K initially contains a sample of XeF_{4} at 0.750 atm . After the reaction achieves equilibrium, the total pressure in the vessel is 1.95 atm. Calculate K_{p} from this data.

PS8.10. The equilibrium constant, K_{c}, for the reaction

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)
$$

is 2.50×10^{-6} at a particular temperature. If the $\left[\mathrm{N}_{2}\right]_{\mathrm{o}}=2.00 \mathrm{M}$, the $\left[\mathrm{O}_{2}\right]_{\mathrm{o}}=$ 1.00 M and the $[\mathrm{NO}]_{\mathrm{o}}=0 \mathrm{M}$, calculate the equilibrium concentration of all species.

