CHEM 1515.001 - 006 Exam I John I. Gelder February 5, 2002

Name	
TA's Name	
Section	

INSTRUCTIONS:

- This examination consists of a total of 8 different pages.
 The last three pages include a periodic table, a table of vapor pressures for water, a solubility table and a table of thermodynamic values. All work should be done in this booklet.
- 2. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO</u> NOT SEPARATE THESE PAGES.
- 3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
- 4. No credit will be awarded if your work is not shown in 4a, 4d and 8.
- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.

	Page 2	Page 3	Page 4	Page 5	TOTAL
SCORES	(23)	(35)	(18)	(24)	(100)

(9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.

a)
$$2K(s) + 2H_2O(l) \rightarrow 2K^+(aq) + 2OH^-(aq) + H_2(g)$$

b)
$$Na_2CO_3(aq) + Ca(NO_3)_2(aq) \rightarrow 2Na^+(aq) + 2NO_3^-(aq) + CaCO_3(s)$$

c) Ba(OH)₂ · 8H₂O(s) + 2NH₄SCN(s)
$$\rightarrow$$
 Ba²⁺(aq) + 10H₂O(l) + 2NH₃(aq) + 2SCN⁻ (aq)

(4) 2a. Write the ionic and net ionic chemical equation for 1a) or 1b).

Ionic equation

$$2Na^{+}(aq) + CO_{3}^{2-}(aq) + Ca^{2+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2Na^{+}(aq) + 2NO_{3}^{-}(aq) + CaCO_{3}(s)$$

Net Ionic equation

$$CO_3^{2-}(aq) + Ca^{2+}(aq) \rightarrow CaCO_3(s)$$

- (10) 3. Predict whether the entropy change in the system is positive or negative for each of the following processes.
 - a) $CH_3OH(l) + O_2(g) \rightarrow HCO_2H(l) + H_2O(l)$

The phases are both liquid, while the reactants are a liquid and a gas. There are equal numbers of moles, and the liquid phase is more ordered compared to the gas phase, so the products are more ordered compared to the reactants and ΔS is –.

b)
$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

The reactants and products are all in the same phase, but there are more moles of products compared to reactants. So there are more possible arrangements in the products compared to the reactants and ΔS is +.

4. Methanol, CH₃OH, can be synthesized by reacting hydrogen gas with carbon monoxide, according to the chemical equation,

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

(18) a) Calculate ΔH°_{rxn} , ΔS°_{rxn} and ΔG°_{rxn} .

$$\begin{array}{c} CO(g) \ + \ 2H_2(g) \ \rightarrow \ CH_3OH(l) \\ \Delta H_f^{\circ} \bigg(\frac{kJ}{mol}\bigg) \ -110.5 \ -0 \ -239 \\ S^{\circ} \bigg(\frac{J}{K \cdot mol}\bigg) \ 198 \ 131 \ 127 \\ \Delta G_f^{\circ} \bigg(\frac{kJ}{mol}\bigg) \ -137 \ -0 \ -166 \\ \Delta H_{rxn} = \sum \Delta H_f \ (products) \ - \sum \Delta H_f \ (reactants) \\ = \left[\Delta H_f \ (CH_3OH(l)) \ \right] - \left[\Delta H_f \ (CO(g)) \ + 2\Delta H_f \ (H_2(g)) \ \right] \\ = (-239 \ kJ) \ - \left[(-110.5 \ kJ) \ + 2(0 \ kJ) \right] = -128 \ kJ \\ \Delta S_{rxn} = \sum S^{\circ} (products) \ - \sum S^{\circ} (reactants) \\ = \left[S^{\bullet} (CH_3OH(l)) \ \right] - \left[S^{\bullet} (CO(g)) \ + 2S^{\bullet} (H_2(g)) \right] \\ = \left[(127 \ \frac{J}{K}) \right] \ - \left[\ (198 \ \frac{J}{K}) \ + 2(131 \ \frac{J}{K}) \right] = -333 \ J/K \\ \Delta G_{rxn} = \sum \Delta G_f \ (products) \ - \sum \Delta G_f \ (reactants) \\ = \left[\Delta G_f \ (CH_3OH(l)) \ \right] - \left[\Delta G_f \ (CO(g)) \ + 2\Delta G_f \ (H_2(g)) \ \right] \end{array}$$

= (-166 kJ) - [(-137 kJ) + 2(0 kJ)] = -29 kJ

(4) b) Which factor, the change in enthalpy, ΔH° , or the change in entropy, ΔS° , provides the principal driving force for the reaction at 298 K? Explain.

 ΔH is the principal driving force, because the sign of ΔH in the reaction is negative. A $-\Delta H$ favors spontaneity. ΔS is also negative. $-\Delta S$ does not favor spontaneity.

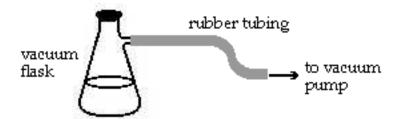
Since $\Delta G = \Delta H - T\Delta S$ a spontaneous reaction has a negative ΔG . In this equation spontaneity is favored by a $-\Delta H$ and a $+\Delta S$. In the reaction in part a only the sign of ΔH favors spontaneity.

(5) c) For the reaction, how is the value of the standard free energy change, ΔG° , affected by an increase in temperature? Explain.

Using the equation $\Delta G = \Delta H - T\Delta S$, since ΔH is negative and ΔS is negative as the temperature increases the T ΔS term is becoming more negative, and $-T\Delta S$ is more positive, making ΔG^{\bullet} more positive and less spontaneous.

(8) d) Calculate the ΔS_f° for CH₃OH(l).

$$C(s) + 2H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow CH_{3}OH(l)$$


$$S^{\circ}\left(\frac{J}{K \cdot mol}\right) \qquad 6 \qquad 131 \qquad 205 \qquad 127$$

$$\Delta S_{rxn}^{\circ} = \Sigma S^{\circ}(products) - \Sigma S^{\circ}(reactants)$$

$$= [S^{\bullet}(CH_{3}OH(l))] - [S^{\bullet}(C(s)) + 2S^{\bullet}(H_{2}(g)) + \frac{1}{2}S^{\bullet}(O_{2}(g))]$$

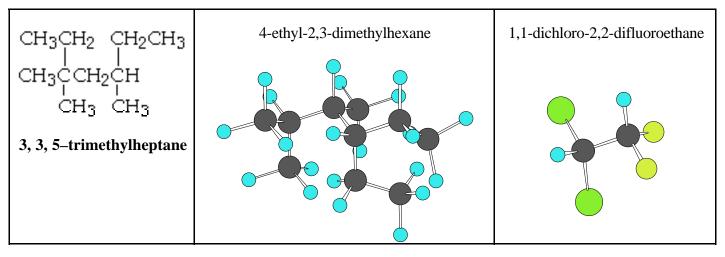
$$= [(127 \frac{J}{K})] - [(6 \frac{J}{K}) + 2(131 \frac{J}{K}) + \frac{1}{2}(205 \frac{J}{K})] = -243 J/K$$

(12) 5. A sample of water is in the vacuum flask shown below.

The vacuum flask side arm has vacuum rubber tubing with one end attached to the flask and the other end attached to a vacuum pump (can not see in this diagram). When the vacuum pump is on any gas/vapor in the flask is removed.

In an experiment the water placed into the flask initially is at room temperature. The rubber tubing is attached to the flask and the vacuum pump, and the pump is turned on. After the pump has been on for several minutes the following two observations are made:

- 1. the volume of water in the flask has decreased;
- 2. what water remains has turned to ice.


Explain both of these observations.

The volume of liquid water decreases because as the vacuum pump removes vapor from above the liquid, particles escape the liquid phase to maintain the equilibrium vapor pressure. Since particles are evaporating and few particles are condensing, the volume of the liquid will decrease.

The reason the liquid eventually turns to solid is because evaporation is an endothermic process, and heat is removed from the system (the liquid water). When enough heat is removed the liquid freezes.

Evaporation is endothermic because the conversion of water in the liquid phase to water in the vapor phase requires breaking hydrogen-bonding forces. Breaking bonds is always an endothermic process.

(6) 6. Give the name or draw the complete Lewis structure (showing all C-H(X) bonds) for each of the following compounds.

(12) 7. Draw and name six different structural isomers for C_8H_{18} . (NOTE: You may use condensed formulas when representing the different structural isomers.)

<i>n</i> -octane
2-methylheptane
3-methylheptane
4-methylheptane
2,3-dimethylhexane
3,3-dimethylhexane

(12) 8. CH₃I has a vapor pressure of 400 mm Hg at 25.3 °C. Calculate the temperature that CH₃I has a vapor pressure of 40.0 mm Hg. ΔH°_{vap} for CH₃I is 29.2 kJ mol⁻¹.

$$\begin{split} &\ln \ \frac{P_1}{P_2} = \frac{\text{-}\Delta H}{R} \ \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \\ &\ln \ \frac{400}{40} = \frac{\text{-}29200 \, \frac{J}{\text{mol}}}{8.314 \, \frac{J}{\text{mol} \cdot \text{K}}} \ \left(\frac{1}{298.3 \, \text{K}} - \frac{1}{T_1}\right) \\ &\ln \ (10) = \text{-}3512 \, \text{K} \ \left(3.35 \, \text{x} \, 10^{\text{-}3} \ - \frac{1}{T_1} \ \right) \\ &2.303 = \text{-}3512 \, \text{K} \ \left(3.35 \, \text{x} \, 10^{\text{-}3} \ - \frac{1}{T_1} \ \right) \\ &-6.56 \, \text{x} \, 10^{\text{-}4} = 3.35 \, \text{x} \, 10^{\text{-}3} \ - \frac{1}{T_1} \\ &\frac{1}{T_1} = 4.00 \, \text{x} \, 10^{\text{-}3} \end{split}$$

	IA Periodic Table of the Elements											VIIIA						
1	\mathbf{H}																	2 He
1	1.008	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
2	3	4 D a											5 D	6	7 N I	8	9	10 N.
2	Li	Be											В	C	N	0	F	Ne
	6.94	9.01											10.81				19.00	
_	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22.99	24.30	IIIB	IVB	VB	VIB	VIIB		-VIII-		IB	IIB	26.98	28.09	30.97	32.06	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4		112.4	114.8	118.7	121.8	127.6	126.9	131.3
_	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
7	87	88	89	104	105	106												
/	Fr	Ra	Ac															
	(223)	226.0	227.0	(261)	(262)	(263)												

Lanthanides

Actinides

ı	58	59	60	61	62	63	64	65	66	67	68	69	70	71
								Tb						
	140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
ſ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
l	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

$$\begin{aligned} \text{PV} &= n \text{RT} & \text{R} &= 0.0821 \, \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} = 8.314 \, \frac{\text{J}}{\text{mol} \cdot \text{K}} \\ \ln \left(\frac{\text{vp}_2}{\text{vp}_1} \right) &= -\frac{\Delta \text{H}^\circ_{\text{vap}}}{\text{R}} \left(\frac{1}{\text{T}_2} - \frac{1}{\text{T}_1} \right) & \text{density of H}_2\text{O} = 1.00 \, \frac{\text{g}}{\text{cm}^3} \\ \text{density of H}_2\text{O} &= 1.00 \, \frac{\text{g}}{\text{cm}^3} \\ \Delta \text{H}^\circ_{\text{rxn}} &= \sum n(\Delta \text{H}_f^\circ(\text{products})) - \sum m(\Delta \text{H}_f^\circ(\text{reactants})) \\ \Delta \text{S}^\circ_{\text{rxn}} &= \sum n(\text{S}^\circ(\text{products})) - \sum m(\text{S}^\circ(\text{reactants})) \\ \Delta \text{G}^\circ_{\text{rxn}} &= \sum n(\Delta \text{G}_f^\circ(\text{products})) - \sum m(\Delta \text{G}_f^\circ(\text{reactants})) \\ \Delta \text{G}^\circ &= \Delta \text{H}^\circ - \text{T}\Delta \text{S}^\circ \end{aligned}$$

Temperature (°C)	Vapor	Temperature (°C)	Vapor
• ,	Pressure(mmHg)	• , ,	Pressure(mmHg)
-5	3.2	50	92.5
0	4.6	55	118.0
5	6.52	60	149.4
10	9.20	65	187.5
15	12.8	70	233.7
20	17.5	75	289.1
25	23.8	80	355.1
30	31.8	85	433.6
35	42.1	90	525.8
40	55.3	95	633.9
45	71.9	100	760

Solubility Table

<u>Ion</u>	<u>Solubility</u>	Exceptions
NO_3^-	soluble	none
ClO ₄ -	soluble	none
Cl-	soluble	except Ag^+ , Hg_2^{2+} , * Pb^{2+}
I-	soluble	except Ag^+ , Hg_2^{2+} , Pb^{2+}
SO ₄ ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO ₃ 2-	insoluble	except Group IA and NH ₄ ⁺
PO ₄ ³⁻	insoluble	except Group IA and NH ₄ ⁺
-ОН	insoluble	except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and NH ₄ ⁺
Na ⁺	soluble	none
$\mathrm{NH_4}^+$	soluble	none
K ⁺	soluble	none
		*slightly soluble

Thermodynamic Values (25 °C)

Substance	ΔH_{f}^{o}	ΔG_{f}^{o}	So	Substance	ΔH_{f}^{o}	ΔG_{f}^{o}	So
and State	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{J}{K \cdot mol}\right)$	and State	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{J}{K \cdot mol}\right)$
Carbon C(s) (graphite) C(s) (diamond)	0 2	0 3	6 2	Oxygen $O_2(g)$	0 232	0 161	205
$C(g)$ (diamond) $CO(g)$ $CO_2(g)$	-110.5 -393.5	-137 -394	198 214	O(g)249 $O_3(g)$	143	163	239
$CH_4(g)$?	-51	186	Nitrogen			
$CH_3OH(g)$	-201	-163	240	$N_2(g)$	0	0	192
CH ₃ OH(l)	-239	-166	127	$NCl_3(g)$	230	271	-137
$CH_3Cl(g)$	-80.8	-57.4	234	$NF_3(g)$	-125	-83.6	-139
$CHCl_3(g)$	-100.8			$NH_3(g)$?	-17	193
CHCl ₃ (l)	-131.8			NH ₃ (aq)	?	-27	111
$H_2CO(g)$	-116	-110	219	NH ₂ CONH ₂ (aq)	?	?	174
HCOOH(g)	-363	-351	249	NO(g)	90	87	211
HCN(g)	135.1	125	202	$NO_2(g)$	32	52	240
$C_2H_{2(g)}$	227	209	201	$N_2O(g)$	82	104	220
$C_2H_4(g)$	52	68	219	$N_2O_4(g)$	10	98	304
$CH_3CHO(g)$	-166	-129	250		-42	134	178
$C_2H_5OH(l)$	-278	-175	161	N ₂ O ₅ (g)			
	-84.7	-32.9	229.5	HNO ₃ (aq)	-207	-111	146
$C_2H_6(g)$				HNO ₃ (l)	-174	-81	156
$C_3H_6(g)$	20.9	62.7	266.9	NH ₄ Cl(s)	-314	-201	95
$C_3H_8(g)$	-104	-24	270	NH ₄ ClO ₄ (s)	-295	-89	186
Bromine	0	0	152	Silver			
$\operatorname{Br}_2(l)$			152.	Ag(s)	0	0	42.6
BrCl(g)	14.64	-0.96	240	$Ag^+(aq)$	105.6	77.1	72.7
Chlorine				$Ag(S_2O_3)^{3}$ - (aq)	-1285.7		
$Cl_2(g)$	0	0	223	AgBr(s)	-100.4	-96.9	107.1
$Cl_2(aq)$	-23	7	121	AgCl(s)	-127.1	-109.8	96.2
				G 10			
$Cl^{-}(aq)$	-167	-131	57	Sulfur	0	0	21.0
HCl(g)	-92	-95	187	S(rhombic)	0 -296.8	0 -300.2	31.8 248.8
Fluorine				$SO_2(g)$			
$F_2(g)$	0	0	203	SO ₃ (g)	-395.7	-371.1	256.3
F-(aq)	-333	-279	-14	$H_2S(g)$	-20.17	-33.0	205.6
HF(g)	-271	-273	174	m·			
				Titanium	762	727	355
Hydrogen				$TiCl_4(g)$	-763	-727	
$H_2(g)$	0	0	131	$TiO_2(s)$	-945	-890	50
H(g)217	203	115					
$H^+(aq)$	0	0	0	Aluminum	506	505	104
OH ⁻ (<i>aq</i>)	-230	-157	-11	$AlCl_3(s)$	-526	-505	184
$H_2O(l)$			**				
$H_2O(g)$	-242	-229	189	Barium BaCl ₂ (aq)	-872	-823	123
Magnesium				$Ba(OH)_2 \cdot 8H_2O(s)$	-3342	-2793	427
Mg(s)	0	0	33				
Mg(aq)	-492	-456	-118	Iodine			
MgO(s)	-601	-569	26.9	$I_2(s)$	0	0	116.7
<i>6</i> - (-)			/	HI(g)	25.94	1.30	206.3
				Ψ,			

 $\overset{H_2O}{\rightarrow}$