CHEM 1515.001 - 006 Exam III John III. Gelder April 16, 2002

Name	
TA's Name	

Section _____

INSTRUCTIONS:

- 1. This examination consists of a total of 8 different pages. The last three pages include a periodic table, a table of equilbrium constants, a solubility table and some useful equations. All work should be done in this booklet.
- 2. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO NOT SEPARATE THESE PAGES</u>.
- 3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
- 4. No credit will be awarded if your work is not shown in 3, 5 and 6.
- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.

	Page 2	Page 3	Page 4	Page 5	TOTAL
SCORES					
	(26)	(16)	(36)	(22)	(100)

- (12) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
 - a) $H_2SO_4(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + SO_4^{2-}(aq) + H_2(aq)$
 - b) $Mg(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Mg(OH)_2(s) + 2Na^+(aq) + 2OH^-(aq)$
 - c) $\operatorname{KOH}(aq) + \operatorname{HI}(aq) \rightarrow \operatorname{H}_2O(l) + \operatorname{K}^+(aq) + \operatorname{I}^-(aq)$
 - d) $\operatorname{NH}_3(aq) + \operatorname{HC}_2\operatorname{H}_3\operatorname{O}_2(aq) \rightarrow \operatorname{NH}_4(aq) + \operatorname{C}_2\operatorname{H}_3\operatorname{O}_2(aq)$
- (4) 2a. Write the ionic and net ionic chemical equation for 1a), 1b), 1c) or 1d). Ionic equation

Net Ionic equation

(10) 3. At high temperature HCl and O_2 react to give Cl_2 gas:

 $4\text{HCl}(g) + \text{O}_2(g) \rightleftharpoons 2\text{Cl}_2(g) + 2\text{H}_2\text{O}(g)$

2.30 atm of HCl and 1.00 atm of O_2 are introduced into a container at 750 K. After equilibrium is established the partial pressure of Cl_2 is found to be 0.93 atm. Calculate K_p for the reaction.

 $P_{HCl} = 0.44 \text{ atm}$ $P_{Cl_2} = 0.93 \text{ atm}$ $P_{O_2} = 0.53 \text{ atm}$ $P_{H_2O} = 0.93 \text{ atm}$ $K_P = 37.7$

(12) 4. The following exothermic reaction is at equilibrium

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Predict what happens to the amount of SO_3 when each of the following changes is made. Provide a brief explanation for your prediction.

a) The temperature is raised.

[SO₃] decreases..rxn exothermic, so raising the temperature is equivalent to adding heat to the products side of the reaction, the reaction will proceed from R to L to reduce the amount of heat added.

b) More O₂ is added.

[SO₃] increases..adding will mean Q will be less than K. To re-establish equilibrium the products must increase and the reactants decrease so the reaction proceeds L to R.

c) The volume of the container is increased.

[SO₃] decrease..increasing the volume will cause Q will be greater than K. To re-establish equilibrium the products must decrease and the reactants increase so the reaction proceeds R to L.

(4) 5. K_c for the reaction

$$\begin{split} & 2N_2O(g) \ + \ O_2(g) \ \rightleftarrows \ 4NO(g) \\ & \text{is 3.39 x 10^{-8} at 1000 K. Calculate K'_c for the reaction} \\ & NO(g) \rightleftarrows \ \frac{1}{2}N_2O(g) \ + \ \frac{1}{4}O_2(g) \end{split}$$

 $\mathbf{K} = \frac{1}{\mathbf{K_c}^{1/4}} \frac{1}{(3.39 \text{ x } 10^{-8})^{1/4}} \ 73.7$

- (36) 6. Calculate the pH for each of the following solutions.
 - a) 0.450 M HCN

pH = 4.82

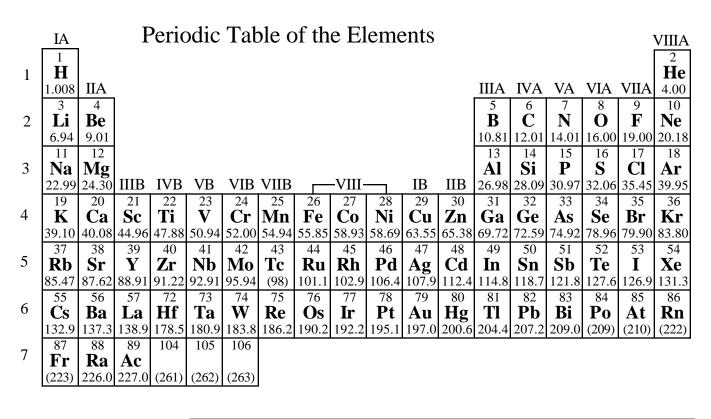
b) 0.210 M C₅H₅N

pH = 9.27

c) $0.840 \text{ M C}_6\text{H}_5\text{NH}_3\text{NO}_3$

- (22)7a. Write a chemical equation to describe how each of the following behave as acids when dissolved in water.(4)
 - i) HCHO₂ \rightleftharpoons H⁺(aq) + CHO₂⁻(aq)
 - ii) $\text{HF} \rightleftharpoons \mathbf{H}^+(aq) + \mathbf{F}^-(aq)$
 - a) Given solutions of the same concentration which acid in part a) is the strongest? Support your answer with a short explanation. (4)

K(HF) = 7.2 x 10⁻⁴ K(HCHO₂) = 1.8 x 10⁻⁴


K is larger for HF so it is the stronger acid.

b) Given solutions of the same concentration which base F^- or CHO_2^- is the strongest? Support your answer with a short explanation. (4)

c) Write a neutralization reaction between the strongest acid from part b) and the strongest base in part c).
(4)

 $HF(aq) + CHO_2^{-}(aq) \rightleftharpoons HCHO_2(aq) + F^{-}(aq)$

d) Does Na_2HPO_4 behave as an acid or base when added to water? Explain. (6)

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
	140.1													175.0
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

 $pH = -log[H^+]$

pH + pOH = 14

 $pOH = -log [OH^-]$

 $K_w = 1.00 \text{ x } 10^{-14}$

 $\Delta G^{\circ} = -RTlnK$

 $K_p = K_c(RT)^{\Delta n}$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 for $ax^2 + bx + c = 0$

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Acetic	HC ₂ H ₃ O ₂	1.8 x 10 ⁻⁵		
Ascorbic	HC ₆ H ₇ O ₆	8.0×10^{-3}		
Arsenic	H ₃ AsO ₄	5.6 x 10 ⁻³	1.0×10^{-7}	3.0×10^{-12}
Arsenous	H ₃ AsO ₃	6.0 x 10 ⁻¹⁰		
Benzoic	HC ₇ H ₅ O ₂	6.5×10^{-5}		
Boric	H ₃ BO ₃	5.8×10^{-10}		
Butyric acid	$HC_4H_7O_2$	1.5×10^{-5}		
Carbonic	H ₂ CO ₃	4.3×10^{-7}	5.6 x 10 ⁻¹¹	
Cyanic	HCNO	3.5×10^{-4}	-	-
Citric	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Formic	HCHO ₂	1.8×10^{-4}		
Hydroazoic	HN ₃	1.9 x 10 ⁻⁵		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	7.2 x 10 ⁻⁴		
Hydrogen chromate ion	$HCrO_4^-$	3.0×10^{-7}		
Hydrogen peroxide	H ₂ O ₂	2.4 x 10 ⁻¹²		
Hydrogen selenate ion	$HSeO_4^-$	2.2×10^{-2}		
Hydrogen sulfate ion	HSO_4^-	1.2×10^{-2}		
Hydrogen sulfide	H ₂ S	5.7×10^{-8}	1.3×10^{-13}	
Hypobromous	HBrO	2.0×10^{-9}		
Hypochlorous Hypoiodus	HClO HIO	$\begin{array}{c} 3.0 \ \text{x} \ 10^{-8} \\ 2.0 \ \text{x} \ 10^{-11} \end{array}$		
Iodic	HIO ₃	1.7×10^{-1}		
Lactic	HC ₃ H ₅ O ₃	1.4×10^{-4}		
Malonic	$H_2C_3H_2O_4$	1.5×10^{-3}	2.0 x 10 ⁻⁶	
Oxalic	$H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	
Nitrous	HNO ₂	4.5×10^{-4}		
Phenol	HC ₆ H ₅ O	1.3 x 10 ⁻¹⁰		
Phosphoric	H ₃ PO ₄	7.5 x 10 ⁻³	6.2 x 10 ⁻⁸	4.2 x 10 ⁻¹³
Paraperiodic	H ₅ IO ₆	2.8 x 10 ⁻²	5.3 x 10 ⁻⁹	
Propionic	HC ₃ H ₅ O ₂	1.3 x 10 ⁻⁵		
Pyrophosphoric	H_4P_2O	3.0×10^{-2}	4.4 x 10 ⁻³	
Selenous	$H_2 SeO_3$	2.3 x 10 ⁻³	5.3 x 10 ⁻⁹	
Sulfuric	$H_2^2 SO_4$	strong acid	1.2×10^{-2}	
Sulfurous	$H_2SO_3^4$	1.7 x 10 ⁻²	6.4 x 10 ⁻⁸	
Tartaric	$H_2^2 C_4 H_4 O_6$	1.0 x 10 ⁻³	4.6 x 10 ⁻⁵	

E.2 DISSOCIATION CONSTANTS FOR BASES AT 25°C

Name	Formula	K _b	Name	Formula	K _b
Ammonia	NH ₃	1.8 x 10 ⁻⁵	Hydroxylamine	HONH ₂	1.1 x 10 ⁻⁸
Aniline	C ₆ H ₅ NH ₂	4.3×10^{-10}	Methylamine	CH ₃ NH ₂	4.4×10^{-4}
Dimethylamine	(CH ₃) ₂ NH	5.4×10^{-4}	Pyridine	C ₅ H ₅ N	1.7 x 10 ⁻⁹
Ethylamine	$C_2H_5NH_2$	6.4×10^{-4}	Trimethylamine	(CH ₃) ₃ N	6.4 x 10 ⁻⁵
Hydrazine	H ₂ NNH ₂	1.3 x 10 ⁻⁶			

Ion	<u>Solubility</u>	Exceptions
NO_3^-	soluble	none
ClO_4^-	soluble	none
Cl-	soluble	except Ag ⁺ , Hg ₂ ²⁺ , *Pb ²⁺
I-	soluble	except Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺
SO4 ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO ₃ ^{2–}	insoluble	except Group IA and NH_4^+
PO ₄ ³⁻	insoluble	except Group IA and NH_4^+
-OH	insoluble	except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and NH ₄ ⁺
Na ⁺	soluble	none
NH_4^+	soluble	none
K^+	soluble	none
		*slightly soluble

Solubility Table