CHEM 1515.001 - 006 Exam V John V. Gelder May 6, 2002

Name	
TA's Name	
Section	

INSTRUCTIONS:

- 1. This examination consists of a total of 11 different pages. The last four pages include a periodic table; many useful equations and constants; a table of vapor pressures for water; a solubility table; a table of equilibrium constants for acids and bases; and a table of thermodynamic values. All work should be done in this booklet.
- 2. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO NOT SEPARATE THESE PAGES</u>.
- 3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
- 4. No credit will be awarded if your work is not shown in 6.
- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.

	Page 2	Page 3	Page 4	Page 5	Page 6	Page 7	TOTAL
SCORES	(18)	(16)	(16)	(18)	(20)	(12)	(100)

(9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.

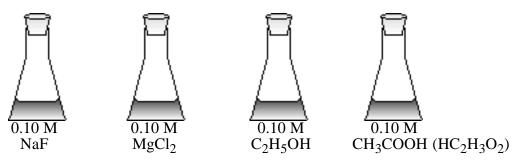
a)
$$Zn(NO_3)_2(aq) + Na_2S(aq) \rightarrow ZnS(s) + 2NO_3(aq) + 2+(aq)$$

b) Na₂CO₃(s) + HCl(aq)
$$\rightarrow$$
 CO₂(g) + H₂O(l) + 2Cl⁻(aq) + 2Na⁺(aq)

c)
$$(CH_3)_2NH(aq) + HCN(aq) \rightarrow (CH_3)_2NH_2^+(aq) + CN^-(aq)$$

(4) 2a. Write the ionic and net ionic chemical equation for 1a), 1b) or 1c).

Ionic equation


$$2\mathrm{Na}^+(aq) \ + \ \mathrm{CO_3^{2-}}(g) \ + \ 2\mathrm{H}^+(aq) \ + \ 2\mathrm{Cl}^-(aq) \to \mathrm{CO_2}(g) \ + \ \mathrm{H_2O}(l) \ + \ 2\mathrm{Cl}^-(aq) \ + \ 2\mathrm{Na}^+(aq)$$
 Net Ionic equation

$$CO_3^{2-}(g) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(l)$$

- (5) 3. Account for the following observations about NH₃ and NF₃. In your answer, use appropriate principles of intermolecular forces. Your answer must include reference to <u>both</u> substances.
 - a) NH₃ has a normal boiling point of -33.4 °C where as NF₃ has a boiling point of -128.8 °C.

NH₃ is polar and can hydrogen bond. Hydrogen-bonding is a strong intermolecular attractive force and causes the boiling point of NH₃ to be high. NF₃ is polar but can not hydrogen bond. The dipole-dipole forces are not as strong an intermolecular attractive force so the boiling point of NF₃ is much lower compared to NH₃.

(16) 4.

Answer the following questions, which refer to the 100~mL samples of aqueous solutions at $25~^\circ\text{C}$ in the stoppered flasks shown above

(a) Which solution has the lowest electrical conductivity? Explain.

The lowest electrical conductivity has the fewest ions... C_2H_5OH . All other substances above form ions in solution.

(b) Which solution has the lowest freezing point? Explain.

 $MgCl_2$ has he lowest freezing point. Since $MgCl_2$ produces the most ions in solution with an I value of 3, ΔT_f will be the largest.

(c) Above which solution is the pressure of water vapor the greatest? Explain.

 ${
m C_2H_5OH}$ does not ionize, so there are the fewest particles in solution so it will have the higher vapor pressure.

(d) Which solution has the highest pH? Explain.

NaF will have the highest pH. F⁻ is a weak base.

CHEM 1515 EXAM V PAGE 4 (16) 5a. Define the term 'equilibrium vapor pressure'. If a sample of a liquid is injected into an evacuated container, describe what phase change occurs. (b) (Note the amount of the liquid injected is small compared to the volume of the container.) Since the container is evacuated when some liquid is introduced, some of the liquid will immediately vaporize until the equilibrium vapor pressure of the liquid is reached, or until all of the liquid evaporates. So if the equilibrium vapor pressure is reached, both liquid and vapor are present. Otherwise only vapor. (c) Is the phase change exothermic or endothermic? Explain? Evaporation is endothermic, because to escape from the liquid phase to the vapor phase intermolecular attractive forces must be over come. Although weak these forces must be broken for particles to enter the vapor phase. (d) In terms of the 'pressure exerted by the vapor' and the 'equilibrium vapor pressure' how do we determine what phase(s) are present in the container after adding the sample? If the pressure due to the vapor is equal to the equilbirium vapor pressure both liquid and vapor must be present. If the pressure due to the vapor is less than the equilibrium vapor pressure only vapor is present. The pressure dur to the vapor can never exceed the equilibrium vapor pressure.

(18) 6. A commercial aqueous solution of ammonia is 28% NH₃ by mass and has a density of 0.900 g mL⁻¹.

(a) Calculate the molarity of the solution.

Assume 100 gram of solution

28~g of NH_3 and 72~grams of water. Convert the mass of NH_3 to moles, then divide the 100~gram of solution by the density to get mLs of solution. Convert mLs to liters and divide into the moles for the molarity

Answer is 14.8 M

(b) Calculate the molality of the solution.

Use the moles determined in part a and divide by the mass of water in kilograms.

Answer is 22.9 molal

(c) Describe how you would prepare 1.00 L of a 0.400 M NH₃ solution from the more concentrated solution in part a).

Using the dilution equation $M_c \cdot V_c = M_d \cdot V_d$

The volume of concentrated ammonia needed is 27.0 mL.

Add 27 mL of NH₃ to about 900 mL of water, be sure all the NH₃ is dissolved than add enough water to reach a final volume of 1000 mLs.

(10) (d) Calculate the pH of the solution prepared in part c)

The pH of the solution is 11.43. This is a simple weak base calculation where the initial concentration of NH_3 is 0.400 M

(10) (e) Calculate the pH of the solution prepared by adding 0.250 mol of solid NH₄Cl to the solution prepared in part c).

This is a common ion/buffer solution. The pH is 9.45.

(12) 7. For the gaseous equilibrium represented below, it is observed that greater amounts of PCl₃ and Cl₂ are produced as the temperature is increased.

$$PCl_3(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

(a) What is the sign of ΔS° for the reaction? Explain.

 ΔS^{\bullet} is positive. In the balanced equation there are more moles of gase in the products compared to the reactants. So the products are more disordered.

(b) What change, if any, will occur in ΔG° for the reaction as the temperature is increased? Explain your reasoning in terms of thermodynamic principles.

The reaction is endothermic because , ", it is observed that greater amounts of PCl_3 and Cl_2 are produced as the temperature is increased ". So if ΔH^{\bullet} is positive and ΔS^{\bullet} is positive ΔG^{\bullet} will be come more negative with increasing temperature. The equation $\Delta G^{\bullet} = \Delta H^{\bullet} - T\Delta S^{\bullet}$ means the reaction with become more spontaneous as T increases. The $T\Delta S^{\bullet}$ term will eventually be greater than ΔH^{\bullet} and the reaction will be spontaneous.

(c) If the volume of the reaction mixture is decreased at constant temperature to half the original volume, what will happened to the number of moles of Cl₂ in the reaction vessel? Explain.

If the volume is decreased the pressure will increase in the container and the reaction will proceed in a direction to relive the pressure, so it will got from right to left and the amount of Cl₂ will decrease.

Q is inversely related to the volume, so as volume decreases Q increases. To re-establish equilibrium the reaction must go from R to L and amount of Cl_2 will decrease.

	IA		F	Perio	odic	Tab	ole c	of th	e El	eme	ents						,	VIIIA
	1																	2
1	H	IIA											IIIA	IVA	VA	VIA	VIIA	He 4.00
	3	4											5	6	7	8	9	10
2	Li	Be											В	\mathbf{C}	N	O	\mathbf{F}	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22.99	24.30	IIIB	IVB	VB	VIB	VIIB		-VIII-		ΙB	IIB	26.98	28.09	30.97	32.06	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4		112.4	114.8	118.7	121.8	127.6	126.9	131.3
_	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0		204.4	207.2	209.0	(209)	(210)	(222)
7	87	88	89	104	105	106					-							
/	Fr	Ra	Ac															
	(223)	226.0	227.0	(261)	(262)	(263)												

Lanthanides

Actinides

ı	58	59	60	61	62	63	64	65	66	67	68	69	70	71
								Tb						
	140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
ſ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
l	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

$$\begin{split} \text{PV} &= n \text{RT} & \text{R} = 0.0821 \, \frac{\text{L-atm}}{\text{mol} \cdot \text{K}} = 8.314 \, \frac{\text{J}}{\text{mol} \cdot \text{K}} & 6.02 \, \text{x} \, 10^{23} \\ \ln \! \left(\frac{\text{vp}_2}{\text{vp}_1} \right) &= -\frac{\Delta \text{H}^\circ_{\text{vap}}}{\text{R}} \left(\frac{1}{\text{T}_2} - \frac{1}{\text{T}_1} \right) & \text{density of } \text{H}_2\text{O} = 1.00 \, \frac{g}{\text{cm}^3} \\ \Delta \text{H}^\circ_{\text{rxn}} &= \sum n (\Delta \text{H}_f^\circ(\text{products})) - \sum m (\Delta \text{H}_f^\circ(\text{reactants})) \\ \Delta \text{S}^\circ_{\text{rxn}} &= \sum n (\text{S}^\circ(\text{products})) - \sum m (\text{S}^\circ(\text{reactants})) \\ \Delta \text{G}^\circ_{\text{rxn}} &= \sum n (\Delta \text{G}_f^\circ(\text{products})) - \sum m (\Delta \text{G}_f^\circ(\text{reactants})) \\ \Delta \text{G}^\circ &= \Delta \text{H}^\circ - \text{T} \Delta \text{S}^\circ \\ \text{pH} &= -\text{log}[\text{H}^+] & \text{pH} + \text{pOH} = 14 & \text{pOH} = -\text{log} \, [\text{OH}^-] & \text{K}_w = 1.00 \, \text{x} \, 10^{-14} \\ \Delta \text{G}^\circ &= -\text{RT} \text{lnK} & \text{K}_p &= \text{K}_c (\text{RT}) \Delta \text{n} \\ \\ \text{x}_{1,2} &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & \text{for } \text{ax}^2 + \text{bx} + \text{c} = 0 \end{split}$$

$$\begin{array}{l} 1 \; pm = 10^{\text{-}12} \; m \\ P_{solution} = \chi_{solvent} P^{\circ}_{solvent} \end{array}$$

$$\Delta T = i \text{km}$$
 $k_f(H_2O) = 1.86 \frac{^{\circ}C}{m}$ $k_b(H_2O) = 0.512 \frac{^{\circ}C}{m}$

edge length (1) = 2r

edge length (1) = $2\sqrt{2}$ · r edge length (1) = $\frac{4r}{\sqrt{3}}$

Temperature (°C)	Vapor	Temperature (°C)	Vapor
	Pressure(mmHg)		Pressure(mmHg)
-5	3.2	50	92.5
0	4.6	55	118.0
5	6.52	60	149.4
10	9.20	65	187.5
15	12.8	70	233.7
20	17.5	75	289.1
25	23.8	80	355.1
30	31.8	85	433.6
35	42.1	90	525.8
40	55.3	95	633.9
45	71.9	100	760

Solubility Table

<u>Ion</u>	<u>Solubility</u>	<u>Exceptions</u>
NO ₃ -	soluble	none
ClO ₄ -	soluble	none
Cl-	soluble	except Ag^+ , Hg_2^{2+} , * Pb^{2+}
I-	soluble	except Ag^+ , Hg_2^{2+} , Pb^{2+}
SO ₄ ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO ₃ ²⁻	insoluble	except Group IA and NH ₄ ⁺
PO ₄ ³⁻	insoluble	except Group IA and NH ₄ ⁺
-ОН	insoluble	except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺
S ²⁻	insoluble	except Group IA, IIA and NH ₄ ⁺
Na ⁺	soluble	none
NH_4^+	soluble	none
K^+	soluble	none
		*slightly soluble

Name	Formula	K_{a1}	K _{a2}	K _{a3}
Acetic	$HC_2H_3O_2$	1.8 x 10 ⁻⁵		
Ascorbic	$HC_6H_7O_6$	8.0×10^{-3}		
Arsenic	H_3AsO_4	5.6×10^{-3}	1.0×10^{-7}	3.0×10^{-12}
Arsenous	H_3AsO_3	6.0×10^{-10}		
Benzoic	$HC_7H_5O_2$	6.5×10^{-5}		
Boric	H_3BO_3	5.8×10^{-10}		
Butyric acid	$HC_4H_7O_2$	1.5×10^{-5}		
Carbonic	H ₂ CO ₃	4.3×10^{-7}	5.6×10^{-11}	
Cyanic	HCNO	3.5×10^{-4}		_
Citric	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Formic	$HCHO_2$	1.8×10^{-4}		
Hydroazoic	HN_3	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	7.2×10^{-4}		
Hydrogen chromate ion	HCrO ₄ ⁻	3.0×10^{-7}		
Hydrogen peroxide	H_2O_2	2.4×10^{-12}		
Hydrogen selenate ion	$\mathrm{HSeO_4}^-$	2.2×10^{-2}		
Hydrogen sulfate ion	${ m HSO_4}^-$	1.2×10^{-2}		
Hydrogen sulfide	H_2S	5.7×10^{-8}	1.3×10^{-13}	
Hypobromous	HBrO	2.0×10^{-9}		
Hypochlorous	HClO	3.0×10^{-8}		
Hypoiodus Iodic	HIO HIO ₃	2.0×10^{-11} 1.7×10^{-1}		
Lactic	HC ₃ H ₅ O ₃	1.7 x 10 1.4 x 10 ⁻⁴		
Malonic	$H_2C_3H_2O_4$	1.4×10^{-3}	2.0×10^{-6}	
Oxalic	$H_2C_3H_2O_4$ $H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	
			0.4 X 10	
Nitrous	HNO ₂	4.5×10^{-4}		
Phenol	HC ₆ H ₅ O	1.3×10^{-10}		10 12
Phosphoric	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Paraperiodic	H ₅ IO ₆	2.8×10^{-2}	5.3×10^{-9}	
Propionic	$HC_3H_5O_2$	1.3×10^{-5}		
Pyrophosphoric	H_4P_2O	3.0×10^{-2}	4.4×10^{-3}	
Selenous	H_2SeO_3	2.3×10^{-3}	5.3×10^{-9}	
Sulfuric	H_2SO_4	strong acid	1.2×10^{-2}	
Sulfurous	H_2SO_3	1.7×10^{-2}	6.4×10^{-8}	
Tartaric	$H_2C_4H_4O_6$	1.0×10^{-3}	4.6×10^{-5}	

E.2 DISSOCIATION CONSTANTS FOR BASES AT 25°C

Name	Formula	K _b	Name	Formula	K _b
Ammonia	NH ₃	1.8×10^{-5}	Hydroxylamine	$HONH_2$	1.1 x 10 ⁻⁸
Aniline	$C_6H_5NH_2$	4.3×10^{-10}	Methylamine	CH_3NH_2	4.4×10^{-4}
Dimethylamine	$(CH_3)_2NH$	5.4×10^{-4}	Pyridine	C_5H_5N	1.7×10^{-9}
Ethylamine	$C_2H_5NH_2$	6.4×10^{-4}	Trimethylamine	$(CH_3)_3N$	6.4×10^{-5}
Hydrazine	H_2NNH_2	1.3×10^{-6}			

Thermodynamic Values (25 °C)

Substance	ΔH_{f}^{o}	ΔG_{f}^{o}	So	Substance	ΔH_{f}^{o}	ΔG_{f}^{o}	So
and State	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{J}{K \cdot mol}\right)$	and State	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{kJ}{mol}\right)$	$\left(\frac{J}{K \cdot mol}\right)$
Carbon C(s) (graphite) C(s) (diamond)	0 2	0 3	6 2	Oxygen $O_2(g)$	0 232	0 161	205
CO(g) $CO_2(g)$	-110.5 -393.5	-137 -394	198 214	$O(g)$ 249 $O_3(g)$	143	163	239
$CH_4(g)$?	-51	186	Nitrogen			
$CH_3OH(g)$	-201	-163	240	$N_2(g)$	0	0	192
CH ₃ OH(<i>l</i>)	-239	-166	127	$NCl_3(g)$	230	271	-137
$CH_3Cl(g)$	-80.8	-57.4	234	$NF_3(g)$	-125	-83.6	-139
$CHCl_3(g)$	-100.8			$NH_3(g)$?	-17	193
$CHCl_3(l)$	-131.8			NH ₃ (aq)	?	-27	111
$H_2CO(g)$	-116	-110	219	NH ₂ CONH ₂ (aq)	?	?	174
HCOOH(g)	-363	-351	249	NO(g)	90	87	211
HCN(g)	135.1	125	202	$NO_2(g)$	32	52	240
$C_2H_{2(g)}$	227	209	201	$N_2O(g)$	82	104	220
$C_2H_4(g)$	52	68	219	$N_2O_4(g)$	10	98	304
$CH_3CHO(g)$	-166	-129	250				
$C_2H_5OH(l)$	-278	-175	161	N ₂ O ₅ (g)	-42	134	178
				HNO ₃ (aq)	-207	-111	146
$C_2H_6(g)$	-84.7	-32.9	229.5	HNO ₃ (l)	-174	-81	156
C ₃ H ₆ (<i>g</i>)	20.9	62.7	266.9	NH ₄ Cl(s)	-314	-201	95
$C_3H_8(g)$	-104	-24	270	NH ₄ ClO ₄ (s)	-295	-89	186
Bromine	0	0	152	Silver			
$\operatorname{Br}_2(l)$	0	0	152.	Ag(s)	0	0	42.6
BrCl(g)	14.64	-0.96	240	$Ag^+(aq)$	105.6	77.1	72.7
Chlorine				$Ag(S_2O_3)^{3}$ - (aq)	-1285.7		
$Cl_2(g)$	0	0	223	AgBr(s)	-100.4	-96.9	107.1
$Cl_2(aq)$	-23	7	121	AgCl(s)	-127.1	-109.8	96.2
				G 10			
$Cl^{-}(aq)$	-167	-131	57 197	Sulfur	0	0	21.0
HCl(g)	-92	-95	187	S(rhombic)	0 -296.8	0 -300.2	31.8 248.8
Fluorine				$SO_2(g)$			
$F_2(g)$	0	0	203	SO ₃ (g)	-395.7	-371.1	256.3
F-(aq)	-333	-279	-14	$H_2S(g)$	-20.17	-33.0	205.6
HF(g)	-271	-273	174	m·			
				Titanium	762	727	355
Hydrogen				$TiCl_4(g)$	-763	-727	
$H_2(g)$	0	0	131	$TiO_2(s)$	-945	-890	50
H(g)217	203	115					
$H^+(aq)$	0	0	0	Aluminum	506	505	104
OH ⁻ (<i>aq</i>)	-230	-157	-11	$AlCl_3(s)$	-526	-505	184
$H_2O(l)$			**				
$H_2O(g)$	-242	-229	189	Barium BaCl ₂ (aq)	-872	-823	123
Magnasium				$Ba(OH)_2 \cdot 8H_2O(s)$	-3342	-2793	427
Magnesium Mg(s)	0	0	33				
Mg(aq)	-492	-456	-118	Iodine			
MgO(s)	-492 -601	-430 -569	26.9	$I_2(s)$	0	0	116.7
11150(3)	001	30)	20.7	HI(g)	25.94	1.30	206.3
ı				111(8)	23.74	1.50	200.5