Name	TA's Name	
		Section #

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

Introduction:

The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed formulas, Lewis structural formulas and three dimensional models of relatively simple organic compounds. To accomplish this you will use your experience and chemical intuition combined with molecular models and computer graphics in a guided laboratory exploration into the 3-dimensional structure of organic compounds.

So what, why should we spend time doing this??? Many new chemistry students find manipulating molecular models helps their understanding of the spatial relationships of atoms in molecules. Using computer graphics will also provide a new way to view and manipulate molecular models. Finally, a simple understanding of organic compounds early in the semester will provide you with structural insights that will help you better understand many of our chemical discussions in the area of chemical kinetics and acid/base chemistry.

If you go to the Assignment Page for Week 3 (Laboratory Information) on your Personal page to the Laboratory information there are several links which will add value to your study of this material and help you answer some of the questions. Unfortunately, a plug-in is required to view some of the neater graphics at these sites. But there is still information there that can be used without using the plug-in.

Also check out the <u>ChemEd Digitial Library Web Site</u> (http://www.chemeddl.org/resources/models360/index.php) Jmol page to see structures of most of the organic compounds you will be building during this laboratory.

IMPORTANT: One of the most important points to be made in this laboratory is the relationship between a 2-D Lewis structure, and the 3-D structure of organic compounds. This is essential for understanding structural and geometric isomerism.

Name	TA's Name	
		Section #

Experiment #1: Pre-Laboratory Questions (Note: These questions must be completed and turned in prior to beginning this laboratory.)

Important concepts to remember: Electron configuration, octet rule, valence electrons, simple Lewis structures, covalent bond, ionic bond, polar covalent bonds, sigma and pi bonds, single, double and triple bonds, bond lengths and angles, resonance, and bond dissociation energies. Your textbook will play an important role as a reference tool in this laboratory. Chapters and sections which will be important to refer to include;

Chapter 15, sections 15.1 - 15.4 Chapter 9, sections 9.1 - 9.5 Chapter 10, sections 10.1 - 10.3 Chapter 11, sections 10.1 - 10.2

1. Draw a Lewis electron-dot structure for each of the covalent molecules below. Include all resonance structures if they are needed to adequately represent the bonding in the molecule. Identify those compounds containing double and triple bonds. Indicate whether the compound is polar or nonpolar. In each compound indicate the magnitude of all bond angles.

H ₂ O ₂		CO ₂		СО	
Polar Yes No	Bond Angle	Polar Yes No	Bond Angle	Polar Yes No	Bond Angle
O ₂		CH ₃ Cl		C ₂ H ₄ Cl ₂	
Polar Yes No	Bond Angle	Polar Yes No	Bond Angle	Polar Yes No	Bond Angle
H ₂ CO ₃		N ₂ O ₅		BrF ₃	
Polar Yes No	Bond Angle	Polar Yes No	Bond Angle	Polar Yes No	Bond Angle

2. Which of the following formulas describe ionic and/or covalent compounds?

NaCl, CO₂, CaCl₂, HCl, CH₃Br, BeCl₂, NH₄NO₃, Ba(NO₃)₂

Write a general rule for determining whether a chemical formula represents an ionic or a covalent compound.

3. Determine the empirical and molecular formula and draw the Lewis structure for a compound which is 17.34% H and 82.66% C. (NOTE: Even though I've not given you a molar mass of the unknown compound, I expect you to use your chemical intuition, (knowledge of Lewis structures) to determine the molecular formula.)

Name			TA's Name	
			_	Section #
Procedure:				
CHECKOUT:				
Organic Model Kit				
Exploring structural features of	simple or	ganic co	mpounds	
The goal of this part of the between molecular formulas, Le reasonable level of comfort you storeroom. Each kit should compare the compared to	ewis structu will need	ural forn	nulas, and cond	
	Number	Color	Atom	
	10 6	black green	carbon chlorine	
	6	red	oxygen	
	2	blue	nitrogen	
	1	yellow	sulfur	
Fach packet should also	22 contain 30		hydrogen	ors that represent a pair of
electrons, either a lone pair or a		_	prastic connect	ors that represent a pair of
PART I. Alkanes				
	unds with	the follo	wing molecula	ar formulas are all classified as
alkanes. CH ₄ , C ₂ H ₆ , C ₃ H ₈ , C	C4H ₁₀ , C5H	$H_{12}, C_6 H_{12}$	I ₁₄ , C ₇ H ₁₆ , C ₈	$H_{18}, C_9H_{20}, C_{10}H_{22}$
Your TA will assign you				
Write the Lewis structure, condeassigned to you.	ensed struc	ctural for	mulas and nan	ne for each of the alkanes
Condensed structural formula:				
Lewis structure:				

Use the molecular model kit to construct several examples of alkane compounds.

the structure of a cycloalkane and an alkane with the same number of carbon atoms?

5. What are two reactions common to alkanes? (Write chemical equations to describe the reactions.)

6. What is a conformer (e.g., eclipsed, staggered and skewed)?

7. Are alkanes soluble or insoluble in water? Support your answer with a brief explanation.

Name	TA's Name Section #			
		Section #		
PART II. Alkenes				
alkenes.	unds with the following molecula H_8 , C_5H_{10} , C_6H_{12} , C_7H_{14} , C_8H_{16}			
Your TA will assign you	three of the alkenes above. You	r assigned alkenes are;		
assigned to you.	ensed structural formulas and nam	ne for each of the alkenes		
Condensed structural formula:				
Lewis structure:				

Use the molecular model kit to construct several examples of alkene compounds. Describe what you notice to be different about the structures of alkenes compared to alkanes?

Name	ame TA's Name			
			Section #	
5.	What are two reactions or reactions.)	common to alkenes? (Write c	chemical equations to describe the	
PART	<u> III. Alkynes</u>			
	The hydrocarbon compo	unds with the following mole	ecular formulas are all classified as	
alkyne	S.			
		$H_6, C_5H_8, C_6H_{10}, C_7H_{12}, C_8$		
	Your TA will assign you	three of the alkynes above.	Your assigned alkynes are;	
	the Lewis structure, conde ed to you.	ensed structural formulas and	name for each of the alkynes	
	nsed structural formula:			
Condc	iised structurar formula.			
Lewis	structure:			

Use the molecular model kit to construct several examples of alkynes compounds. Describe what you notice to be different in the structures of alkynes compared to alkenes?

Name	<u> </u>	TA's Name	
		Section #	
Questi	tions:		
1.	What is the general formula for an alkyne?		
2.	Draw all of the structural isomers for one of will tell you which one.)	of the alkynes and name each isomer (you	r TA
	assigned alkyne		

PART IV. Aromatics

The hydrocarbon compound with the following molecular formula is classified as an aromatic.

 C_6H_6

Use the molecular model kit to construct benzene. Draw the Lewis structure and condensed structural formulas for benzene. Describe the molecular geometry of benzene.

Experiment #1 1-10 Spring 2011

Name	TA's Name Section #		
PART V. Alcohols			
The compounds with the	e following molecular formulas are al	l classified as alcohols.	
CH	H ₃ OH, C ₂ H ₅ OH, C ₃ H ₇ OH, C ₄ H ₉ OH		
Write the Lewis structure, conde	ensed structural formulas and name for	or each of the alcohols.	
Condensed structural formula:			
Lewis structure:			
Use the molecular model kit to	construct several examples of alcohol	compounds	
Questions (use your textbook as	-	compounds.	
What is a primary, secon			
···			
2. Are alcohols soluble or i explanation.	insoluble in water? Support your ans	wer with a brief	
3. What is an ether? How does an ether structurally differ from an alcohol?			

Name	TA's Name Section #			
			Section #	
PART VI. Carboxylic	acids			
The compound acids.	s with the following molecular	cular formulas are all clas	sified as carboxylic	
acids.	HCOOH, CH ₃ COOH, C	₂ H ₅ COOH, C ₃ H ₇ COOH		
Write the Lewis struct	ure, condensed structural f	formulas and name for each	ch of the carboxylic acids.	
Condensed structural formula:				
Tormura.				
Lewis structure:				
Use the molecular mod	del kit to construct several	examples of carboxylic a	ecids.	
Questions (use your te	xtbook as a reference):			
1. What is the imp	portant functional group in	the carboxylic acids?		
2. Are carboxylic acids soluble or insoluble in water? Support your answer with a brief				
Are carboxylic explanation.	acids soluble or insoluble	in water? Support your a	answer with a brief	
3. What is an este	er? How does an ester stru	cturally differ from a carl	poxylic acid?	

Name		TA's Name	
Trame		TA's Name	Section #
PART VII. Amines			
The compound	ls with the following molecular	cular formulas are all clas	sified as amines.
	CH_3NH_2 , $(CH_3)_2NH$	$, (CH_3)_3N, C_2H_5NH_2$	
Write the Lewis struct	ture, condensed structural f	formulas and name for each	ch of the amines.
Condensed structural formula:			
Lewis structure:			
Use the molecular mod	del kit to construct several	examples of amines.	
Questions (use your te	extbook as a reference):		
1. What is the im	portant functional group in	the amines?	
2. What is a prim	nary, secondary and tertiary	amine?	
3. What are amin	es derivatives of?		
4. Are amines sol	luble or insoluble in water?	? Support your answer wi	th a brief explanation.