This is ACA \# 15. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. Click here to show a set of five ACA15 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

1. A 1.00 liter container holds 1.00 mol of $\mathrm{CO}(\mathrm{g})$ and $1.00 \mathrm{~mol} \mathrm{H} \mathbf{~} \mathrm{O}(\mathrm{g})$ only at $800{ }^{\circ} \mathrm{C}$. The reaction that occurs is described by the chemical equation

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) Write the equilibrium expression for the reaction.
$\mathrm{K}_{\mathrm{C}}=[\mathrm{CO} 2][\mathrm{H} 2] /[\mathrm{CO}][\mathrm{H} 2 \mathrm{O}] \quad 7$ \%
$\mathrm{K}_{\mathrm{C}}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right] /[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]$
b) Which direction will the reaction proceed to reach equilibrium?
left to right
The reaction will proceed from left to right to establish equilibrium.
c) Assuming ' x ' molar CO reacts to reach equilibrium, determine the entry for each substance in the change row in the ICE table below in terms of ' x ', then determine the equilibrium entry for each substance.

	$\mathrm{CO}(\mathrm{g})$	+ $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$	+ $\mathrm{H}_{2}(\mathrm{~g})$
Initial Pressure	1.00 M	1.00 M	0 M	0 M
Change	$\begin{array}{ll} x- & \text { No } \\ x & -\mathrm{x} \mathbf{M} \\ & \\ & -\mathrm{x} \end{array} 86 \%$	$\begin{aligned} & \text {-x M } \\ & \text { - x } 8 C \% \end{aligned}$	$\begin{aligned} & +x \text { M } \\ & +x 200^{\circ} \% \end{aligned}$	$\begin{aligned} & +\mathrm{xM} \text { M } \\ & 100 \% \end{aligned}$

				+ \mathbf{x}
Equilibrium Pressure	$\begin{array}{r} 86 \% \\ 1.00-\mathrm{x} \mathrm{M} \\ 1.00-\mathrm{x} \\ \mathrm{x}-1 \mathrm{No} \end{array}$	$\begin{gathered} \delta C_{0}^{\circ}{ }_{0} \\ 1.00-\mathrm{xM} \mathrm{M} \\ \mathbf{1 . 0 0 - x} \end{gathered}$	$\begin{gathered} 90 \% \\ 0+\mathbf{x ~ M} \\ 0+x \\ x \sim 0 \text { No } \end{gathered}$	$\begin{aligned} & 90 \% \\ & 0+\mathrm{x} \mathrm{M} \\ & 0+\mathrm{x} \end{aligned}$

d) Substitute the equilibrium amounts into the equilibrium expression you enter in Q2.
$K_{C}=(\mathbf{x})(\mathbf{x}) /(1.00-\mathrm{x})(1.00-\mathrm{x})$
$K_{C}=(x)(x) /(1.00-x)(1.00-x)=x^{2} /(1.00-x)^{2}$
e) The equilibrium constant for this reaction at this temperature is $\mathbf{0 . 7 2}$. Calculate the value of x, the amount of $C O$ that reacts to reach equilibrium,
$\mathrm{x}=0.459 \mathrm{M}$

$0.72=\mathrm{x}^{2} /(1.00-\mathrm{x})^{2}$
Take the square root of both sides of the equation,
$0.849=\mathrm{x} /(1.00-\mathrm{x})$
$0.849 *(1.00-x)=x$
0.849-0.849x $=x$
$1.849 \mathrm{x}=0.849$
$\mathrm{x}=0.459 \mathrm{M}$
f) Determine the equilibrium concentration for each reactant and product in the reaction.
$[\mathrm{CO}]=0.541 \mathrm{M}$
43%
$[\mathrm{CO}]=1.00-\mathrm{x}=1.00-0.459=0.541 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.541 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=1.00-\mathrm{x}=1.00-0.459=0.541 \mathrm{M}$
$\left[\mathrm{CO}_{2}\right]=0.459 \mathrm{M}$
$\left[\mathrm{CO}_{2}\right]=+\mathrm{x}=0.459 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=0.459 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=+\mathrm{x}=\mathbf{0 . 4 5 9} \mathrm{M}$
2. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
3. If there is one question you would like to have answered in lecture, what would that question be?
nothing

$$
\begin{aligned}
& \text { e- mail me your work, Ill check i comment } \\
& \text { what is valuable to know for the exam? } \\
& \text { ACA 8-ACAlle Shifting Ran } A_{1} B \\
& \text { CE } 8-\text { BCE 15 Extent of R XN } \\
& \text { PS5-PS8 Lecture Resources } \\
& \text { Page }
\end{aligned}
$$

