This is ACA # 16. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five ACA16 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

1. Given the reaction

$$3H_2(g) + N_2(g)$$
 2NH₃(g)

is at equilibrium at 297 K, predict the direction (left to right, or right to left) the reaction will proceed to re-establish equilibrium when each of the following stresses disturb the equilibrium. The formation of ammonia has a Δ H° of -92.2 kJ mol⁻¹.

a) nitrogen is removed from the reaction container right to left

The reaction will proceed from right to left to re-establish equilibrium. When N_2 is removed from the system Q is larger than K, so the reaction must proceed from right to left.

b) ammonia is removed from the reaction container left to right 73%

The reaction will proceed from left to right to re-establish equilibrium. When NH₃ is removed from the system Q is smaller than K, so the reaction must proceed from left to right.

c) the volume of the reaction is doubled right to left 5θ

The reaction will proceed from right to left to re-establish equilibrium. When the volume is doubled from the system Q is larger than K, so the reaction must proceed from right to left.

d) the temperature of the reaction is lowered left to right 45%

The reaction will proceed from left to right to re-establish equilibrium. When the

59% Vett

(mol NHz) $= \frac{MOl_{NH_3}}{MOl_{N_2} MOl}$ C) K= $\frac{mo(N_2)}{\sqrt{mo(H_2)^3}}$ $= \frac{mol_{NH_3}^2}{mol_{N_2}mol_{H_2}}$ $= \frac{mol_{NH_3}^2}{mol_{N_3}mol_{H_3}}$ double volume Q 7 Kp reaction must proceed right to ktt OM JP rxn must proceed to inc P, more particles on the reactor side 1 V so nxn goes night to left

3H2 + N2 = 2NHz + heat

to dec T must remove heat so rxn must proceed left to right to increase heat

Remember a reaction at equilibrium that experiences a starss will proceed in a direction to remove the stress.

temperature is lowered, heat is removed from the reaction, the reaction will proceed from left to right to add heat and relieve the stress.

2. The formation of ammonia has a \triangle H° of -92.2 kJ mol⁻¹.

$$3H_2(g) + N_2(g)$$
 2NH₃(g)

At 24.0 °C, K for the reaction is 6.5 x 10⁵. Calculate the temperature when K = 4.3 x 10⁴. Note: Use the relationship $\ln(K_2/K_1) = -(\Delta H^\circ/R)(1/T_2 - 1/T_1)$

T = 320 °C

 $\ln(K_2/K_1) = -(\Delta H^{\circ}/R)(1/T_2 - 1/T_1)$

We'll assign 24.0 °C (297 K) as T₂ and solve for T₁, substituting

 $\ln(6.5 \ge 10^{5}/4.3 \ge 10^{4}) = -(-92,200 \ \text{J mol}^{-1}/8.314 \ \text{J mol}^{-1} \ \text{K}^{-1})(1/297 - 1/T_{1})$

 $\ln(15.1) = -(-11089 \text{ K})(0.003367 - 1/T_1)$

2.715 = 37.34 - 11089/T

-34.62 = - 11089 K/T

T = -11089 K/-34.62

T = 320 K or 47.3 °C

3. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

4. If there is one question you would like to have answered in lecture, what would that question be?

nothing