This is ACA \# 16. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. Click here to show a set of five ACA16 student responses, randomly selected from all of the student responses thus far, in a new window.

John, here are your responses to the ACA and the Expert's response.

1. Given the reaction

$$
\mathbf{3} \mathbf{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \vec{\square} 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

is at equilibrium at 297 K , predict the direction (left to right, or right to left) the reaction will proceed to re-establish equilibrium when each of the following stresses disturb the equilibrium. The formation of ammonia has a $\Delta \mathbf{H}^{\circ}$ of $-92.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
a) nitrogen is removed from the reaction container right to left

The reaction will proceed from right to left to re-establish equilibrium. When \mathbf{N}_{2} is removed from the system \mathbf{Q} is larger than K, so the reaction must proceed from right to left.
b) ammonia is removed from the reaction container left to right 73%

The reaction will proceed from left to right to reestablish equilibrium. When $\mathbf{N H}_{3}$ is removed from the system \mathbf{Q} is smaller than K, so the reaction must proceed from left to right.
c) the volume of the reaction is doubled right to left

The reaction will proceed from right to left to re-establish equilibrium. When the volume is doubled from the system \mathbf{Q} is larger than K, so the reaction must proceed from right to left.
d) the temperature of the reaction is lowered left to right

The reaction will proceed from left to right to re-establish equilibrium. When the
c)

$$
\begin{aligned}
& =\frac{\operatorname{mol}_{\mathrm{NHH}_{3}}^{2}}{\mathrm{NDN}_{N_{2}} \cdot m \mathrm{mo}_{H_{2}}} \cdot\left(\frac{1}{\frac{1}{V^{2}}}\right) \\
& Q=\frac{\mathrm{mol}_{\mathrm{NH}}^{3}}{2} \mathrm{Nal}_{\mathrm{N}}^{2} \cdot \mathrm{~mol}_{\mathrm{H}_{2}}^{2} \cdot V^{2}
\end{aligned}
$$

double volume

$$
Q>K p
$$

reaction mist proceed right to levit
or
IV $\& P$ exp must proceed to inc P, more particles bn the reactant side so nun goes night to left

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightleftharpoons 2 \mathrm{NH}+\text { heat }
$$

to dec T must remove hecet so nun must proceed left to right to increase neat

Remember
a reaction at equilibrium that experiences a stress will proceed in a direction to remove the stress.
temperature is lowered, heat is removed from the reaction, the reaction will proceed from left to right to add heat and relieve the stress.
2. The formation of ammonia has a $\Delta \mathbf{H}^{\circ}$ of $-92.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{N}_{2}(\mathrm{~g}) \mathbf{N H}_{3}(\mathrm{~g})
$$

At $24.0^{\circ} \mathrm{C}$, K for the reaction is 6.5×10^{5}. Calculate the temperature when $K=4.3 \mathrm{x}$ 10^{4}. Note: Use the relationship $\ln \left(K_{2} / K_{1}\right)=-\left(\Delta H^{\circ} / R\right)\left(1 / T_{2}-1 / T_{1}\right)$
$\mathrm{T}=320^{\circ} \mathrm{C}$
$\ln \left(\mathbf{K}_{2} / \mathbf{K}_{1}\right)=-\left(\Delta H^{\circ} / \mathbf{R}\right)\left(\mathbf{1} / \mathbf{T}_{\mathbf{2}}-\mathbf{1} / \mathbf{T}_{1}\right)$
We'll assign $24.0^{\circ} \mathrm{C}(297 \mathrm{~K})$ as T_{2} and solve for T_{1}, substituting
$\ln \left(6.5 \times 10^{5} / 4.3 \times 10^{4}\right)=-\left(-92,200 \mathrm{~J} \mathrm{~mol}^{-1} / 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\left(1 / 297-1 / \mathrm{T}_{1}\right)$
$\ln (15.1)=-(-11089 K)\left(0.003367-1 / T_{1}\right)$
$2.715=37.34-11089 / \mathrm{T}$
$-34.62=-11089 \mathrm{~K} / \mathrm{T}$
$T=-11089 \mathrm{~K} /-34.62$
$\mathrm{T}=320 \mathrm{~K}$ or $47.3^{\circ} \mathrm{C}$
3. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
4. If there is one question you would like to have answered in lecture, what would that question be?
nothing

