This is BCE\#9.

I recommend you print out this page and bring it to class. Click here to show a set of five BCE8 student responses randomly selected from all of the student responses thus far in a new window.

John, here are your responses to the BCE and the Expert's response.

1. A solution is prepared by mixing 12.0 g of HCl (hydrogen chloride) in 50.0 g of water.

Calculate:

The mol of HCl :
0.329
$\mathrm{mol} \mathrm{HCl}=12.0 \mathrm{~g} \mathrm{HCl} *(1 \mathrm{~mol} \mathrm{HCl} / 36.45 \mathrm{~g} \mathrm{HCl})=0.329 \mathrm{~mol}$
The mol of water:
2.78

$\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=50.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} *\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)=2.78 \mathrm{~mol}$
2. Weight \% is defined as;

$$
\text { weight percent }=\frac{\text { weight solute }}{\text { weight solution }} \cdot 100
$$

Calculate the weight \% HCl in the solution:

$$
19.4
$$

82%
weight $\% \mathrm{HCl}=12.0 \mathrm{~g} \mathrm{HCl} /\left(\mathbf{1 2 . 0} \mathrm{g} \mathrm{HCl}+\mathbf{5 0 . 0} \mathrm{g} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right) * \mathbf{1 0 0}=\mathbf{1 9 . 4 \%}$

(80.6% by weight $\mathrm{H}_{2} \mathrm{O}$)
3. Mol fraction is defined as:
mol fraction $=\frac{\text { mol solute }}{\text { mol solution }}$
Calculate the mol fraction of HCl :
0.106
mol fraction $\mathrm{HCl}=0.329 \mathrm{~mol} \mathrm{HCl} /(0.329 \mathrm{molHCl}+2.78 \mathrm{~mol} \mathrm{H} \mathbf{2} \mathbf{O})=0.106$ (mol fraction $\mathrm{H}_{2} \mathrm{O}$ is 0.894)
4. Molality is defined as:
molality $=\frac{\text { mol solute }}{\mathrm{kg} \text { solvent }}$
Calculate the molality of $\mathbf{H C l}$ in the solution:
6.58
molality $\mathrm{HCl}=0.329 \mathrm{~mol} \mathrm{HCl} /\left(0.050 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}\right)=6.58$ molal
5. Molarity is defined as:
molarity $=\frac{\text { moles of solute }}{\text { liters of solution }}$
Can you calculate the molarity of the solution from the information provided? Yes/No. explain.

No, I need to know the density of the solution so I can convert the mass of the solution $(62.0 \mathrm{~g})$ to milliliters of solution.
We can not calculate the molarity of this solution because we do not know the volume of the solution. We know the mass of the solution ($12 \mathrm{~g} \mathrm{HCl}+50.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$), but to determine the volume of the solution we need to know the density of the solution. Although the solution is 80.6% water its density will be different than that of water.
6. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
7. If there is one question you would like to have answered in lecture, what would that question be?

now to figure out the last question.
 40
 now to figure out the last question.

 how to calculate moles