NERNST EQUATION

Section

Νάμε

1. During the reaction between zinc metal and copper (II) nitrate the measured cell potential changes. In the table below the measured cell potential, E_{cell} is shown as the concentration of $Zn^{2+}(aq)$ and $Cu^{2+}(aq)$ change.

Experiment	E _{cell}	E°	[Zn ²⁺]	[Cu ²⁺]
1	0.760	0.76	1	1
2	0.757	0.76	1.1	0.9
3	0.755	0.76	1.2	0.8
4	0.752	0.76	1.3	0.7
5	0.749	0.76	1.4	0.6
6	0.746	0.76	1.5	0.5
7	0.742	0.76	1.6	0.4
8	0.738	0.76	1.7	0.3
9	0.732	0.76	1.8	0.2
10	0.722	0.76	1.9	0.1
11	0.692	0.76	1.99	0.01

- a. How does the cell potential change during the reaction?
- b. When the data is plotted E_{cell} versus $\log\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$ a straight line with a negative slope is obtained (try it yourself). Careful consideration of this reaction and other reactions yields the following relationship between the cell potential and concentration of reactants and products.

$$\mathbf{E}_{\text{cell}} = \mathbf{E}^{\circ} - \frac{0.0591}{n} \log \left(\frac{\left[\mathbf{Z} \mathbf{n}^{2+} \right]}{\left[\mathbf{C} \mathbf{u}^{2+} \right]} \right)$$

where n is the number of electrons transferred in the balanced oxidation–reduction reaction and the concentration of products divided by reactants. You should recognize the ratio of concentration as Q for the reaction. Try one of the Experiments to see that you can calculate the E_{cell} for the reaction.

- 2. Complete the following problems:
 - a. Calculate E° for the reaction

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \to \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}(s)$$

- i. Calculate E_{cell} when the ratio of these concentrations is small, that is, if $[Zn^{2+}] = 1 \times 10^{-4} M$ and $[Cu^{2+}] = 1.0 M$.
- ii. Calculate E_{cell} when the ratio of these concentrations is large, that is, if $[Cu^{2+}] = 1 \times 10^{-4} \text{ M}$ and $[Zn^{2+}] = 1.0 \text{ M}$.
- b. Which of the following oxidizing agents become stronger as the [H⁺] is increased? Which are unchanged? Which become weaker?
 - i. Br₂
 - ii. Fe³⁺
 - iii. MnO₄-
 - iv. H^+
 - v. $Cr_2O_7^{2-}$
- c. Calculate E_{cell} for:

 $Cu(s) \|Cu^{2+}(aq) (3.00 \text{ M})\|Cu^{2+}(aq) (0.100 \text{ M})\|Cu(s)$